Suppr超能文献

胞苷对RNA连接酶核酶的结构和功能的影响。

The effect of cytidine on the structure and function of an RNA ligase ribozyme.

作者信息

Rogers J, Joyce G F

机构信息

Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA.

出版信息

RNA. 2001 Mar;7(3):395-404. doi: 10.1017/s135583820100228x.

Abstract

A cytidine-free ribozyme with RNA ligase activity was obtained by in vitro evolution, starting from a pool of random-sequence RNAs that contained only guanosine, adenosine, and uridine. This ribozyme contains 74 nt and catalyzes formation of a 3',5'-phosphodiester linkage with a catalytic rate of 0.016 min(-1). The RNA adopts a simple secondary structure based on a three-way junction motif, with ligation occurring at the end of a stem region located several nucleotides away from the junction. Cytidine was introduced to the cytidine-free ribozyme in a combinatorial fashion and additional rounds of in vitro evolution were carried out to allow the molecule to adapt to this added component. The resulting cytidine-containing ribozyme formed a 3',5' linkage with a catalytic rate of 0.32 min(-1). The improved rate of the cytidine-containing ribozyme was the result of 12 mutations, including seven added cytidines, that remodeled the internal bulge loops located adjacent to the three-way junction and stabilized the peripheral stem regions.

摘要

通过体外进化,从仅包含鸟苷、腺苷和尿苷的随机序列RNA文库出发,获得了一种具有RNA连接酶活性的无胞苷核酶。这种核酶含有74个核苷酸,催化形成3',5'-磷酸二酯键,催化速率为0.016 min⁻¹。该RNA基于一个三向接头基序采用简单的二级结构,连接反应发生在距离接头几个核苷酸的茎区末端。以组合方式将胞苷引入无胞苷核酶,并进行额外的体外进化轮次,以使分子适应这种添加的组分。所得含胞苷核酶形成3',5'-连接的催化速率为0.32 min⁻¹。含胞苷核酶催化速率的提高是12个突变的结果,包括7个添加的胞苷,这些突变重塑了位于三向接头附近的内部凸起环,并稳定了外围茎区。

相似文献

1
The effect of cytidine on the structure and function of an RNA ligase ribozyme.
RNA. 2001 Mar;7(3):395-404. doi: 10.1017/s135583820100228x.
2
A complex ligase ribozyme evolved in vitro from a group I ribozyme domain.
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14712-7. doi: 10.1073/pnas.96.26.14712.
3
A ribozyme that lacks cytidine.
Nature. 1999 Nov 18;402(6759):323-5. doi: 10.1038/46335.
5
The secondary structure and sequence optimization of an RNA ligase ribozyme.
Nucleic Acids Res. 1995 Aug 25;23(16):3231-8. doi: 10.1093/nar/23.16.3231.
7
RNA-catalyzed RNA ligation on an external RNA template.
Chem Biol. 2002 Mar;9(3):297-307. doi: 10.1016/s1074-5521(02)00110-2.
8
A ligase ribozyme obtained from a structured pool.
Nucleic Acids Symp Ser (Oxf). 2004(48):209-10. doi: 10.1093/nass/48.1.209.
9
A Faster Triphosphorylation Ribozyme.
PLoS One. 2015 Nov 6;10(11):e0142559. doi: 10.1371/journal.pone.0142559. eCollection 2015.
10
Isolation of novel ribozymes that ligate AMP-activated RNA substrates.
Chem Biol. 1997 Aug;4(8):607-17. doi: 10.1016/s1074-5521(97)90246-5.

引用本文的文献

1
On an RNA-Membrane Protogenome.
Life (Basel). 2025 Apr 24;15(5):692. doi: 10.3390/life15050692.
2
Assembly of catalytic complexes from randomized oligonucleotides.
Sci Adv. 2025 May 2;11(18):eadu2647. doi: 10.1126/sciadv.adu2647. Epub 2025 Apr 30.
3
Effects of lipid membranes on RNA catalytic activity and stability.
Biol Cell. 2025 Feb;117(2):e202400115. doi: 10.1111/boc.202400115.
4
Origin of ribonucleotide recognition motifs through ligand mimicry at early earth.
RNA Biol. 2024 Jan;21(1):107-121. doi: 10.1080/15476286.2024.2423149. Epub 2024 Nov 11.
5
Development of Allosteric Ribozymes for ATP and l-Histidine Based on the R3C Ligase Ribozyme.
Life (Basel). 2024 Apr 17;14(4):520. doi: 10.3390/life14040520.
6
Emergence of linkage between cooperative RNA replicators encoding replication and metabolic enzymes through experimental evolution.
PLoS Genet. 2023 Aug 4;19(8):e1010471. doi: 10.1371/journal.pgen.1010471. eCollection 2023 Aug.
7
Molecular Anatomy of the Class I Ligase Ribozyme for Elucidation of the Activity-Generating Unit.
Biology (Basel). 2023 Jul 17;12(7):1012. doi: 10.3390/biology12071012.
8
Minimal RNA self-reproduction discovered from a random pool of oligomers.
Chem Sci. 2023 Jun 20;14(28):7656-7664. doi: 10.1039/d3sc01940c. eCollection 2023 Jul 19.
9
A ribozyme that uses lanthanides as cofactor.
Nucleic Acids Res. 2023 Aug 11;51(14):7163-7173. doi: 10.1093/nar/gkad513.
10

本文引用的文献

2
Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation.
J Am Chem Soc. 1996 Apr 10;118(14):3332-9. doi: 10.1021/ja953712b.
3
Design and optimization of effector-activated ribozyme ligases.
Nucleic Acids Res. 2000 Apr 15;28(8):1751-9. doi: 10.1093/nar/28.8.1751.
4
Structure and function of the hairpin ribozyme.
J Mol Biol. 2000 Mar 24;297(2):269-91. doi: 10.1006/jmbi.2000.3560.
5
General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme.
Science. 2000 Feb 25;287(5457):1493-7. doi: 10.1126/science.287.5457.1493.
6
A complex ligase ribozyme evolved in vitro from a group I ribozyme domain.
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14712-7. doi: 10.1073/pnas.96.26.14712.
7
A ribozyme that lacks cytidine.
Nature. 1999 Nov 18;402(6759):323-5. doi: 10.1038/46335.
8
Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme.
Science. 1999 Oct 1;286(5437):123-6. doi: 10.1126/science.286.5437.123.
9
10
The stability of the RNA bases: implications for the origin of life.
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7933-8. doi: 10.1073/pnas.95.14.7933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验