Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
Department of pathology and laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
RNA Biol. 2024 Jan;21(1):78-92. doi: 10.1080/15476286.2024.2405757. Epub 2024 Oct 2.
Research on the origin of life investigates the transition from abiotic chemistry to the emergence of biology, with the 'RNA world hypothesis' as the leading theory. RNA's dual role in storage and catalysis suggests its importance in this narrative. The discovery of natural ribozymes emphasizes RNA's catalytic capabilities in prebiotic environments, supporting the plausibility of an RNA world and prompting exploration of precellular evolution. Collective autocatalytic sets (CASs) mark a crucial milestone in this transition, fostering complexity through autocatalysis. While modern biology emphasizes sequence-specific polymerases, remnants of CASs persist in primary metabolism highlighting their significance. Autocatalysis, driven by CASs, promotes complexity through mutually interdependent catalytic sets. Yet, the transition from ribonucleotides to complex RNA oligomers remains puzzling. Questions persist about the genesis of the first self-replicating RNA molecule, RNA's stability in prebiotic conditions, and the shift to complex molecular reproduction. This review delves into diverse facets of the RNA world's emergence, addressing critical bottlenecks and scientific advances. Integrating insights from simulation and in vitro evolution research, we illuminate the multistep biogenesis of catalytic RNA from the abiotic world. Through this exploration, we aim to elucidate the journey from the primordial soup to the dawn of life, emphasizing the interplay between chemistry and biology in understanding life's origins.
生命起源的研究探讨了从无生命的化学到生物学出现的转变,其中“RNA 世界假说”是主要理论。RNA 在存储和催化中的双重作用表明其在这一叙述中的重要性。天然核酶的发现强调了 RNA 在原始环境中的催化能力,支持了 RNA 世界的合理性,并促使人们探索细胞前的进化。集体自催化集(collective autocatalytic sets,CASs)标志着这一转变的一个关键里程碑,通过自催化促进了复杂性的发展。虽然现代生物学强调序列特异性聚合酶,但 CASs 的残留物在主要代谢中仍然存在,突出了它们的重要性。由 CASs 驱动的自催化通过相互依存的催化集促进了复杂性的发展。然而,从核糖核苷酸到复杂的 RNA 寡聚物的转变仍然令人困惑。关于第一个自我复制的 RNA 分子的起源、RNA 在原始条件下的稳定性以及向复杂分子复制的转变等问题仍然存在。本综述深入探讨了 RNA 世界出现的多个方面,涉及关键的瓶颈和科学进展。通过整合模拟和体外进化研究的见解,我们阐明了从无生命世界到催化 RNA 的多步骤生物发生。通过这一探索,我们旨在阐明从原始汤到生命曙光的旅程,强调在理解生命起源时化学和生物学之间的相互作用。