Suppr超能文献

Wavelets as chromatin texture descriptors for the automated identification of neoplastic nuclei.

作者信息

Van De Wouwer G, Weyn B, Scheunders P, Jacob W, Van Marck E, Van Dyck D

机构信息

Vision Lab, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.

出版信息

J Microsc. 2000 Jan;197(Pt 1):25-35. doi: 10.1046/j.1365-2818.2000.00594.x.

Abstract

Chromatin distribution reflects the organization of the DNA of a nucleus and contains important cellular diagnostic and prognostic information. Feulgen staining of breast tissue enables the chromatin distribution of the nucleus to be visualized in the form of texture. Describing texture in an objective and quantitative way by means of a set of texture parameters, combined with the study of the relationship of such parameters to the pathobiological cell properties, is useful both for reduction of the subjectivity inherently coupled to visual observation and for more accurate prognosis or diagnosis. We have presented an automated classification scheme for the diagnosis and grading of invasive breast cancer. The input to this scheme was a digitized microscopical image, from which nuclei were segmented. Chromatin texture was described using a set of textural parameters that include first- and second-order statistics of the image grey levels. The more recently developed wavelet energy parameters were also included in our study. Classification was performed by a Knn-classifier, which is a versatile multivariate statistical classification technique. We investigated the role of the tissue preparation technique and found that parameters derived from cytospins were better texture descriptors than those from sections. A 100% correct classification was achieved in a patient diagnosis experiment and 82% in a nuclear grading experiment.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验