Suppr超能文献

多光谱成像在常规临床组织病理学图像核分类中的应用

Utility of multispectral imaging for nuclear classification of routine clinical histopathology imagery.

作者信息

Boucheron Laura E, Bi Zhiqiang, Harvey Neal R, Manjunath Bs, Rimm David L

机构信息

Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106, USA.

出版信息

BMC Cell Biol. 2007 Jul 10;8 Suppl 1(Suppl 1):S8. doi: 10.1186/1471-2121-8-S1-S8.

Abstract

BACKGROUND

We present an analysis of the utility of multispectral versus standard RGB imagery for routine H&E stained histopathology images, in particular for pixel-level classification of nuclei. Our multispectral imagery has 29 spectral bands, spaced 10 nm within the visual range of 420-700 nm. It has been hypothesized that the additional spectral bands contain further information useful for classification as compared to the 3 standard bands of RGB imagery. We present analyses of our data designed to test this hypothesis.

RESULTS

For classification using all available image bands, we find the best performance (equal tradeoff between detection rate and false alarm rate) is obtained from either the multispectral or our "ccd" RGB imagery, with an overall increase in performance of 0.79% compared to the next best performing image type. For classification using single image bands, the single best multispectral band (in the red portion of the spectrum) gave a performance increase of 0.57%, compared to performance of the single best RGB band (red). Additionally, red bands had the highest coefficients/preference in our classifiers. Principal components analysis of the multispectral imagery indicates only two significant image bands, which is not surprising given the presence of two stains.

CONCLUSION

Our results indicate that multispectral imagery for routine H&E stained histopathology provides minimal additional spectral information for a pixel-level nuclear classification task than would standard RGB imagery.

摘要

背景

我们对多光谱图像与标准RGB图像在常规苏木精-伊红(H&E)染色组织病理学图像中的效用进行了分析,特别是在细胞核的像素级分类方面。我们的多光谱图像有29个光谱带,在420 - 700纳米的可视范围内间隔10纳米。据推测,与RGB图像的3个标准波段相比,额外的光谱带包含有助于分类的更多信息。我们对数据进行了分析以检验这一假设。

结果

对于使用所有可用图像波段进行分类,我们发现多光谱图像或我们的“ccd”RGB图像能获得最佳性能(检测率和误报率之间的平衡最佳),与次优性能的图像类型相比,整体性能提高了0.79%。对于使用单个图像波段进行分类,最佳的单个多光谱波段(光谱的红色部分)相比最佳的单个RGB波段(红色)性能提高了0.57%。此外,红色波段在我们的分类器中具有最高的系数/偏好。对多光谱图像的主成分分析表明只有两个显著的图像波段,鉴于存在两种染色剂,这并不奇怪。

结论

我们的结果表明,对于常规H&E染色组织病理学的多光谱图像,与标准RGB图像相比,在像素级细胞核分类任务中提供的额外光谱信息极少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e787/1924513/663018a27d49/1471-2121-8-S1-S8-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验