Suppr超能文献

磁共振成像形成与重建原理。

Principles of MR image formation and reconstruction.

作者信息

Duerk J L

机构信息

Department of Radiology, Case Western Reserve University School of Medicine, Ohio, USA.

出版信息

Magn Reson Imaging Clin N Am. 1999 Nov;7(4):629-59.

Abstract

This article describes a number of concepts that provide insights into the process of MR imaging. The use of shaped, fixed-bandwidth RF pulses and magnetic field gradients is described to provide an understanding of the methods used for slice selection. Variations in the slice-excitation profile are shown as a function of the RF pulse shape used, the truncation method used, and the tip angle. It should be remembered that although the goal is to obtain uniform excitation across the slice, this goal is never achieved in practice, thus necessitating the use of slice gaps in some cases. Excitation, refocusing, and inversion pulses are described. Excitation pulses nutate the spins from the longitudinal axis into the transverse plane, where their magnetization can be detected. Refocusing pulses are used to flip the magnetization through 180 degrees once it is in the transverse plane, so that the influence of magnetic field inhomogeneities is eliminated. Inversion pulses are used to flip the magnetization from the +z to the -z direction in invesrsion-recovery sequences. Radiofrequency pulses can also be used to eliminate either fat or water protons from the images because of the small differences in resonant frequency between these two types of protons. Selective methods based on chemical shift and binomial methods are described. Once the desired magnetization has been tipped into the transverse plane by the slice-selection process, two imaging axes remain to be spatially encoded. One axis is easily encoded by the application of a second magnetic field gradient that establishes a one-to-one mapping between position and frequency during the time that the signal is converted from analog to digital sampling. This frequency-encoding gradient is used in combination with the Fourier transform to determine the location of the precessing magnetization. The second image axis is encoded by a process known as phase encoding. The collected data can be described as the 2D Fourier transform of the object being imaged. Thus, a concept known as k-space is used to describe the image data and its relationship to the imaging gradient waveforms. The article demonstrates how phase encoding selects the row of k-space from which the data will be recorded, and frequency encoding determines the column. The goal of any acquisition strategy is to map k-space completely, and two methods, spiral imaging and echo-planar imaging, are described to demonstrate that the data acquisition path need not be a straight line.

摘要

本文介绍了一些有助于深入了解磁共振成像过程的概念。文中描述了使用成形的、固定带宽的射频脉冲和磁场梯度,以帮助理解用于层面选择的方法。展示了层面激励轮廓的变化与所使用的射频脉冲形状、截断方法以及翻转角之间的函数关系。应当记住,尽管目标是在整个层面上获得均匀激励,但在实际中这一目标从未实现,因此在某些情况下需要使用层面间隙。文中还描述了激励脉冲、重聚焦脉冲和反转脉冲。激励脉冲使自旋从纵向轴进动到横向平面,在该平面上可以检测到它们的磁化。重聚焦脉冲用于在磁化处于横向平面时将其翻转180度,从而消除磁场不均匀性的影响。反转脉冲用于在反转恢复序列中将磁化从+z方向翻转到 -z方向。由于这两种类型质子的共振频率存在微小差异,射频脉冲还可用于从图像中消除脂肪或水质子。文中描述了基于化学位移的选择方法和二项式方法。一旦通过层面选择过程将所需的磁化翻转到横向平面,仍有两个成像轴需要进行空间编码。通过施加第二个磁场梯度可以轻松地对一个轴进行编码,该梯度在信号从模拟转换为数字采样期间在位置和频率之间建立一对一映射。这个频率编码梯度与傅里叶变换结合使用,以确定进动磁化的位置。第二个图像轴通过一种称为相位编码的过程进行编码。所采集的数据可以描述为被成像物体的二维傅里叶变换。因此,一个称为k空间的概念用于描述图像数据及其与成像梯度波形的关系。本文展示了相位编码如何选择将记录数据的k空间行,以及频率编码如何确定列。任何采集策略的目标都是完整地映射k空间,文中描述了两种方法——螺旋成像和回波平面成像,以证明数据采集路径不必是一条直线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验