Dundas Christopher M, Dinneny José R
Department of Biology, Stanford University, Stanford, CA 94305, USA.
Biodes Res. 2022 Sep 1;2022:9858049. doi: 10.34133/2022/9858049. eCollection 2022.
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
基因工程植物在应对全球粮食安全和农业可持续发展挑战方面具有巨大潜力。然而,基于植物的遗传电路构建受到缺乏充分表征的遗传元件和电路设计规则的限制。相比之下,细菌合成生物学的进展产生了大量可用于构建细菌电路的传感器、致动器和其他工具。由于根际定殖细菌(根际细菌)对植物健康和生长有重大影响,这些微生物中的遗传电路设计可用于间接改造植物并加速设计-构建-测试-学习循环。在这里,我们概述了用于设计根际细菌电路的遗传元件和最佳实践,重点介绍了可用于监测/控制根际和植物过程的传感器、致动器和底盘物种。