Suppr超能文献

根际细菌中的基因回路设计

Genetic Circuit Design in Rhizobacteria.

作者信息

Dundas Christopher M, Dinneny José R

机构信息

Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Biodes Res. 2022 Sep 1;2022:9858049. doi: 10.34133/2022/9858049. eCollection 2022.

Abstract

Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.

摘要

基因工程植物在应对全球粮食安全和农业可持续发展挑战方面具有巨大潜力。然而,基于植物的遗传电路构建受到缺乏充分表征的遗传元件和电路设计规则的限制。相比之下,细菌合成生物学的进展产生了大量可用于构建细菌电路的传感器、致动器和其他工具。由于根际定殖细菌(根际细菌)对植物健康和生长有重大影响,这些微生物中的遗传电路设计可用于间接改造植物并加速设计-构建-测试-学习循环。在这里,我们概述了用于设计根际细菌电路的遗传元件和最佳实践,重点介绍了可用于监测/控制根际和植物过程的传感器、致动器和底盘物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd3/10521742/e8098a7f8a08/9858049.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验