Suppr超能文献

高浓度和低浓度多价离子中DNA的B-Z转变统一理论

A unified theory of the B-Z transition of DNA in high and low concentrations of multivalent ions.

作者信息

Guéron M, Demaret J, Filoche M

机构信息

Groupe de Biophysique de l'Ecole Polytechnique et de Unité mixte de recherche 7643 du Centre National de la Recherche Scientifique, Ecole Polytechnique, 91128 Palaiseau, France.

出版信息

Biophys J. 2000 Feb;78(2):1070-83. doi: 10.1016/s0006-3495(00)76665-3.

Abstract

We showed recently that the high-salt transition of poly[d(G-C)]. poly[d(G-C)] between B-DNA and Z-DNA (at [NaCl] = 2.25 M or [MgCl(2)] = 0.7 M) can be ascribed to the lesser electrostatic free energy of the B form, due to better immersion of the phosphates in the solution. This property was incorporated in cylindrical DNA models that were analyzed by Poisson-Boltzmann theory. The results are insensitive to details of the models, and in fair agreement with experiment. In contrast, the Z form of the poly[d(G-m5C)] duplex is stabilized by very small concentrations of magnesium. We now show that this striking difference is accommodated quantitatively by the same electrostatic theory, without any adjustable parameter. The different responses to magnesium of the methylated and nonmethylated polymers do not come from stereospecific cation-DNA interactions: they stem from an experimentally derived, modest difference in the nonelectrostatic component of the free energy difference (or NFED) between the Z and B forms. The NFED is derived from circular DNA measurements. The differences between alkaline earth and transition metal ions are explained by weak coordination of the latter. The theory also explains the induction of the transition by micromolar concentrations of cobalt hexammine, again without specific binding or adjustable parameters. Hence, in the case of the B-Z transition as in others (e.g., the folding of tRNA and of ribozymes), the effect of multivalent cations on nucleic acid structure is mediated primarily by nonspecific ion-polyelectrolyte interactions. We propose this as a general rule for which convincing counter-examples are lacking.

摘要

我们最近表明,聚[d(G-C)]·聚[d(G-C)]在B-DNA和Z-DNA之间的高盐转变(在[NaCl]=2.25 M或[MgCl₂]=0.7 M时)可归因于B型的静电自由能较小,这是由于磷酸盐在溶液中的更好浸入。该性质被纳入通过泊松-玻尔兹曼理论分析的圆柱形DNA模型中。结果对模型细节不敏感,并且与实验相当吻合。相比之下,聚[d(G-m⁵C)]双链体的Z型由非常低浓度的镁稳定。我们现在表明,这种显著差异可以由相同的静电理论定量解释,无需任何可调参数。甲基化和未甲基化聚合物对镁的不同响应并非来自立体特异性阳离子-DNA相互作用:它们源于Z型和B型之间自由能差(或NFED)的非静电成分的实验得出的适度差异。NFED来自环状DNA测量。碱土金属离子和过渡金属离子之间的差异通过后者的弱配位来解释。该理论还解释了微摩尔浓度的六氨合钴对转变的诱导,同样无需特异性结合或可调参数。因此,就像在其他情况(例如tRNA和核酶的折叠)中一样,在B-Z转变的情况下,多价阳离子对核酸结构的影响主要由非特异性离子-聚电解质相互作用介导。我们提出这是一条普遍规则,目前尚无令人信服的反例。

相似文献

1
A unified theory of the B-Z transition of DNA in high and low concentrations of multivalent ions.
Biophys J. 2000 Feb;78(2):1070-83. doi: 10.1016/s0006-3495(00)76665-3.
4
The electrostatic contribution to the B to Z transition of DNA.
Biochemistry. 1996 Jan 30;35(4):1115-24. doi: 10.1021/bi951463y.
5
Elsamicin A can convert the Z-form of poly[d(G-C)] and poly[(G-m5C)] back to B-form DNA.
Biochemistry. 1992 Nov 24;31(46):11641-6. doi: 10.1021/bi00161a051.
6
The B-DNA to Z-DNA transition in alkali and tetraalkylammonium salts correlated with cation effects on solvent structure.
Biochem Biophys Res Commun. 1987 Oct 29;148(2):609-16. doi: 10.1016/0006-291x(87)90920-x.
7
Mitomycin C binding to poly[d(G-m5C)].
Biochem J. 1995 Feb 15;306 ( Pt 1)(Pt 1):185-90. doi: 10.1042/bj3060185.
8
A kinetic model for the B-Z transition of poly[d(G-C)].poly[d(G-C)] and poly[d(G-m5C)].poly[d(G-m5C)].
J Biol Inorg Chem. 2001 Sep;6(7):675-82. doi: 10.1007/s007750100244.
10
Z-->B transition in poly[d(G-m5C)2] induced by interaction with 4',6-diamidino-2-phenylindole.
Biopolymers. 1993 Nov;33(11):1677-86. doi: 10.1002/bip.360331105.

引用本文的文献

1
Identification of methylation-sensitive human transcription factors using meSMiLE-seq.
bioRxiv. 2024 Nov 12:2024.11.11.619598. doi: 10.1101/2024.11.11.619598.
2
Zα Domain of ADAR1 Binds to an A-Form-like Nucleic Acid Duplex with Low Micromolar Affinity.
Biochemistry. 2024 Mar 19;63(6):777-787. doi: 10.1021/acs.biochem.3c00636. Epub 2024 Mar 4.
3
Z-Form Adoption of Nucleic Acid is a Multi-Step Process Which Proceeds through a Melted Intermediate.
J Am Chem Soc. 2024 Jan 10;146(1):677-694. doi: 10.1021/jacs.3c10406. Epub 2023 Dec 22.
4
Chemistry, structure and function of approved oligonucleotide therapeutics.
Nucleic Acids Res. 2023 Apr 11;51(6):2529-2573. doi: 10.1093/nar/gkad067.
5
Structure and Formation of Z-DNA and Z-RNA.
Molecules. 2023 Jan 14;28(2):843. doi: 10.3390/molecules28020843.
6
Non-canonical DNA structures: Diversity and disease association.
Front Genet. 2022 Sep 5;13:959258. doi: 10.3389/fgene.2022.959258. eCollection 2022.
7
Z-form extracellular DNA is a structural component of the bacterial biofilm matrix.
Cell. 2021 Nov 11;184(23):5740-5758.e17. doi: 10.1016/j.cell.2021.10.010. Epub 2021 Nov 3.
8
Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions.
Biophys J. 2008 Jul;95(1):287-95. doi: 10.1529/biophysj.107.123174. Epub 2008 Mar 13.
9
Hexammineruthenium(III) ion interactions with Z-DNA.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Dec 1;63(Pt 12):1008-13. doi: 10.1107/S1744309107047781. Epub 2007 Nov 21.

本文引用的文献

1
Order, dynamics and metal-binding in the lead-dependent ribozyme.
J Mol Biol. 1998 Nov 27;284(2):325-35. doi: 10.1006/jmbi.1998.2181.
4
The electrostatic contribution to the B to Z transition of DNA.
Biochemistry. 1996 Jan 30;35(4):1115-24. doi: 10.1021/bi951463y.
7
Composite cylinder models of DNA: application to the electrostatics of the B-Z transition.
Biophys J. 1993 Oct;65(4):1700-13. doi: 10.1016/S0006-3495(93)81213-X.
8
The distance of manganese to phosphorus atoms of polynucleotides, and dynamics of binding.
Biochimie. 1981 Nov-Dec;63(11-12):815-9. doi: 10.1016/s0300-9084(82)80265-4.
10
Significance and mechanism of divalent-ion binding to transfer RNA.
Biophys J. 1982 Jun;38(3):231-6. doi: 10.1016/S0006-3495(82)84553-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验