Kastenholz Mika A, Schwartz Thomas U, Hünenberger Philippe H
Laboratorium für Physikalische Chemie, ETH Hönggerberg, HCI, Zürich, Switzerland.
Biophys J. 2006 Oct 15;91(8):2976-90. doi: 10.1529/biophysj.106.083667.
The transition between the B and Z conformations of double-helical deoxyribonucleic acid (DNA) belongs to the most complex and elusive conformational changes occurring in biomolecules. Since the accidental discovery of the left-handed Z-DNA form in the late 1970s, research on this DNA morphology has been engaged in resolving questions relative to its stability, occurrence, and function in biological processes. While the occurrence of Z-DNA in vivo is now widely recognized and the major factors influencing its thermodynamical stability are largely understood, the intricate conformational changes that take place during the B-to-Z transition are still unknown at the atomic level. In this article, we report simulations of this transition for the 3'-(CGCGCG)-5' hexamer duplex using targeted molecular dynamics with the GROMOS96 force field in explicit water under different ionic-strength conditions. The results suggest that for this oligomer length and sequence, the transition mechanism involves: 1), a stretched intermediate conformation, which provides a simple solution to the important sterical constraints involved in this transition; 2), the transient disruption of Watson-Crick hydrogen-bond pairing, partly compensated energetically by an increase in the number of solute-solvent hydrogen bonds; and 3), an asynchronous flipping of the bases compatible with a zipperlike progression mechanism.
双螺旋脱氧核糖核酸(DNA)的B构象与Z构象之间的转变,属于生物分子中发生的最为复杂且难以捉摸的构象变化。自20世纪70年代末意外发现左手螺旋Z-DNA形态以来,关于这种DNA形态的研究一直致力于解决与其在生物过程中的稳定性、存在情况及功能相关的问题。尽管如今Z-DNA在体内的存在已得到广泛认可,且影响其热力学稳定性的主要因素也已基本明了,但在原子水平上,B-Z转变过程中发生的复杂构象变化仍不清楚。在本文中,我们报告了在不同离子强度条件下,使用GROMOS96力场并在明确的水环境中通过靶向分子动力学对3'-(CGCGCG)-5'六聚体双链体进行这种转变的模拟。结果表明,对于这种寡聚物长度和序列,转变机制涉及:1)一种伸展的中间构象,它为该转变中涉及的重要空间位阻限制提供了一个简单的解决方案;2)沃森-克里克氢键配对的短暂破坏,溶质-溶剂氢键数量的增加在能量上部分补偿了这种破坏;3)与拉链式进展机制相符的碱基异步翻转。