Zoladz J A, Rademaker A C, Sargeant A J
Department of Physiology, Institute of Human Physiology, AWF-Crakow, Poland.
Exp Physiol. 2000 Jan;85(1):117-24.
The effect of different pedalling rates (40, 60, 80, 100 and 120 rev min-1) on power generating capability, oxygen uptake (O2) and blood lactate concentration [La]b during incremental tests was studied in seven subjects. No significant differences in O2,max were found (mean +/- S.D., 5.31 +/- 0.13 l min-1). The final external power output delivered to the ergometer during incremental tests (PI,max) was not significantly different when cycling at 60, 80 or 100 rev min-1 (366 +/- 5 W). A significant decrease in PI,max of 60 W was observed at 40 and 120 rev min-1 compared with 60 and 100 rev min-1, respectively (P < 0.01). At 120 rev min-1 there was also a pronounced upward shift of the O2-power output (O2-P) relationship. At 50 W O2 between 80 and 100 rev min-1 amounted to +0.43 l min-1 but to +0.87 l min-1 between 100 and 120 rev min-1. The power output corresponding to 2 and 4 mmol l-1 blood lactate concentration (P[La]2 and P[La]4 ) was also significantly lower (> 50 W) at 120 rev min-1 (P < 0.01) while pedalling at 40, 60, 80 and 100 rev min-1 showed no significant difference. The maximal peak power output (PM, max) during 10 s sprints increased with pedalling rate up to 100 rev min-1. Our study indicates that with increasing pedalling rate the reserves in power generating capability increase, as illustrated by the PI,max/PM,max ratio (54.8, 44.8, 38.1, 34.6, 29.2%), the P[La]4/PM,max ratio (50.4, 38.9, 31.0, 27.7, 22.9%) and the P[La]2/PM,max ratio (42.8, 33.5, 25.6, 23.1, 15.6%) increases. Taking into consideration the O2,max, the PI,max and the reserve in power generating capability we concluded that choosing a high pedalling rate when performing high intensity cycling exercise may be beneficial since it provides greater reserve in power generating capability and this may be advantageous to the muscle in terms of resisting fatigue. However, beyond 100 rev min-1 there is a decrease in external power that can be delivered for an given O2 with an associated earlier onset of metabolic acidosis and clearly this will be disadvantageous for sustained high intensity exercise.
研究了七名受试者在递增测试中不同蹬踏速率(40、60、80、100和120转/分钟)对发电能力、摄氧量(O₂)和血乳酸浓度[La]b的影响。未发现O₂max有显著差异(平均值±标准差,5.31±0.13升/分钟)。在以60、80或100转/分钟骑行时,递增测试期间传递到测力计的最终外部功率输出(PI,max)无显著差异(366±5瓦)。与60和100转/分钟相比,在40和120转/分钟时观察到PI,max分别显著降低60瓦(P<0.01)。在120转/分钟时,O₂-功率输出(O₂-P)关系也有明显的向上偏移。在50瓦功率时,80至100转/分钟之间的O₂为+0.43升/分钟,但100至120转/分钟之间为+0.87升/分钟。在120转/分钟蹬踏时,对应血乳酸浓度为2和4毫摩尔/升时的功率输出(P[La]2和P[La]4)也显著更低(>50瓦)(P<0.01),而在40、60、80和100转/分钟蹬踏时无显著差异。10秒冲刺期间的最大峰值功率输出(PM,max)随着蹬踏速率增加至100转/分钟而增加。我们的研究表明,随着蹬踏速率增加,发电能力储备增加,如PI,max/PM,max比值(54.8%、44.8%、38.1%、34.6%、29.2%)、P[La]4/PM,max比值(50.4%、38.9%、31.0%、27.7%、22.9%)和P[La]2/PM,max比值(42.8%、33.5%、25.6%、23.1%、15.6%)的增加所示。考虑到O₂max、PI,max和发电能力储备后,我们得出结论,在进行高强度骑行运动时选择高蹬踏速率可能有益,因为它提供了更大的发电能力储备,这在抵抗疲劳方面可能对肌肉有利。然而,超过100转/分钟后,对于给定的O₂,可输出的外部功率会降低,同时代谢性酸中毒会更早出现,显然这对持续的高强度运动不利。