Suppr超能文献

占空比对力竭性动态孤立肢体运动期间肌肉疲劳的时间进程及神经肌肉代偿起始的影响。

Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.

作者信息

Sundberg Christopher W, Bundle Matthew W

机构信息

Biomechanics Laboratory, Departments of Health and Human Performance and Organismal Biology and Ecology, University of Montana, Missoula, Montana.

Biomechanics Laboratory, Departments of Health and Human Performance and Organismal Biology and Ecology, University of Montana, Missoula, Montana

出版信息

Am J Physiol Regul Integr Comp Physiol. 2015 Jul 1;309(1):R51-61. doi: 10.1152/ajpregu.00356.2014. Epub 2015 Apr 15.

Abstract

We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9-11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle.

摘要

我们研究了改变肌肉工作周期对在恒定负荷、疲劳性膝关节伸展运动期间出现的运动能力下降和神经肌肉反应的影响。我们通过实验改变了肢体运动周期中肌肉不活动部分的持续时间,并假设在相同运动任务中更长的相对不活动持续时间会:1)降低肌肉性能损失的速率和程度;2)增加触发肌肉疲劳所需的力量。在每种条件下(工作周期 = 0.6 和 0.3),男性受试者[年龄 = 25.9 ± 2.0 岁(标准误);体重 = 85.4 ± 2.6 千克],以在 4 至 290 秒之间引发疲劳的力量输出,完成了 9 - 11 次双腿膝关节伸展运动的力竭性试验。这种新颖的工作周期操作产生了两个主要结果;首先,我们观察到肌肉性能损失的程度(DC0.6 = 761 ± 35 牛 vs. DC0.3 = 366 ± 49 牛)和性能损失的时间进程都有两倍的差异。例如,在这些力量范围中点的力竭性试验持续时间相差超过 30 秒(t0.6 = 36 ± 2.6 秒 vs. t0.3 = 67 ± 4.3 秒)。其次,超过有氧能力峰值并开始依赖无氧代谢所需的最小力量,以及引发肌电图活动代偿性增加所需的力量,在较低工作周期条件下比在较高工作周期条件下大 300%。这些结果表明,疲劳诱导的招募额外运动单位的代偿行为是由依赖无氧代谢进行 ATP 再合成触发的,并且与肌肉产生的最大力量的绝对水平或比例无关。

相似文献

1
Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.
Am J Physiol Regul Integr Comp Physiol. 2015 Jul 1;309(1):R51-61. doi: 10.1152/ajpregu.00356.2014. Epub 2015 Apr 15.
2
Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue.
J Appl Physiol (1985). 2017 Jan 1;122(1):130-141. doi: 10.1152/japplphysiol.00468.2016. Epub 2016 Nov 17.
3
A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.
Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1457-64. doi: 10.1152/ajpregu.00108.2006. Epub 2006 Jul 13.
4
Impact of age on the development of fatigue during large and small muscle mass exercise.
Am J Physiol Regul Integr Comp Physiol. 2018 Oct 1;315(4):R741-R750. doi: 10.1152/ajpregu.00156.2018. Epub 2018 Jul 11.
5
Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles.
Am J Physiol Regul Integr Comp Physiol. 2015 Apr 15;308(8):R724-33. doi: 10.1152/ajpregu.00461.2014. Epub 2015 Feb 18.
6
Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions.
J Appl Physiol (1985). 2010 Dec;109(6):1842-51. doi: 10.1152/japplphysiol.00458.2010. Epub 2010 Sep 2.
7
Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris.
Eur J Appl Physiol. 2005 May;94(1-2):196-206. doi: 10.1007/s00421-004-1293-0. Epub 2005 Mar 25.
8
Heart failure with preserved ejection fraction diminishes peripheral hemodynamics and accelerates exercise-induced neuromuscular fatigue.
Am J Physiol Heart Circ Physiol. 2021 Jan 1;320(1):H338-H351. doi: 10.1152/ajpheart.00266.2020. Epub 2020 Nov 8.
9
Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise.
Med Sci Sports Exerc. 2019 Aug;51(8):1642-1652. doi: 10.1249/MSS.0000000000001959.
10
Effect of salbutamol on neuromuscular function in endurance athletes.
Med Sci Sports Exerc. 2013 Oct;45(10):1925-32. doi: 10.1249/MSS.0b013e3182951d2d.

引用本文的文献

1
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
2
Fatigability of the knee extensor muscles during high-load fast and low-load slow resistance exercise in young and older adults.
Exp Gerontol. 2021 Oct 15;154:111546. doi: 10.1016/j.exger.2021.111546. Epub 2021 Sep 5.
3
Bioenergetic basis of skeletal muscle fatigue.
Curr Opin Physiol. 2019 Aug;10:118-127. doi: 10.1016/j.cophys.2019.05.004. Epub 2019 May 10.
4
Bioenergetic basis for the increased fatigability with ageing.
J Physiol. 2019 Oct;597(19):4943-4957. doi: 10.1113/JP277803. Epub 2019 May 20.
7
Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults.
J Appl Physiol (1985). 2018 Jul 1;125(1):146-158. doi: 10.1152/japplphysiol.01141.2017. Epub 2018 Mar 1.
8
Sex Differences in Mechanisms of Recovery after Isometric and Dynamic Fatiguing Tasks.
Med Sci Sports Exerc. 2018 May;50(5):1070-1083. doi: 10.1249/MSS.0000000000001537.
9
Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue.
J Appl Physiol (1985). 2017 Jan 1;122(1):130-141. doi: 10.1152/japplphysiol.00468.2016. Epub 2016 Nov 17.

本文引用的文献

1
Influence of duty cycle on the power-duration relationship: observations and potential mechanisms.
Respir Physiol Neurobiol. 2014 Feb 1;192:102-11. doi: 10.1016/j.resp.2013.11.010. Epub 2013 Dec 17.
2
Effects of load magnitude on muscular activity and tissue oxygenation during repeated elbow flexions until failure.
Eur J Appl Physiol. 2013 Jul;113(7):1895-904. doi: 10.1007/s00421-013-2618-7. Epub 2013 Mar 8.
3
Sprint exercise performance: does metabolic power matter?
Exerc Sport Sci Rev. 2012 Jul;40(3):174-82. doi: 10.1097/JES.0b013e318258e1c1.
4
Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans.
J Appl Physiol (1985). 2012 Jul;113(2):215-23. doi: 10.1152/japplphysiol.00022.2012. Epub 2012 May 3.
5
Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy.
Adv Exp Med Biol. 2011;701:353-9. doi: 10.1007/978-1-4419-7756-4_48.
6
Cellular and molecular mechanisms of bone remodeling.
J Biol Chem. 2010 Aug 13;285(33):25103-8. doi: 10.1074/jbc.R109.041087. Epub 2010 May 25.
8
Critical power: implications for determination of V˙O2max and exercise tolerance.
Med Sci Sports Exerc. 2010 Oct;42(10):1876-90. doi: 10.1249/MSS.0b013e3181d9cf7f.
9
The biological limits to running speed are imposed from the ground up.
J Appl Physiol (1985). 2010 Apr;108(4):950-61. doi: 10.1152/japplphysiol.00947.2009. Epub 2010 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验