Suppr超能文献

逐渐变细在主动脉波反射中的作用:水力和数学模型研究

Role of tapering in aortic wave reflection: hydraulic and mathematical model study.

作者信息

Segers P, Verdonck P

机构信息

Hydraulics Laboratory, Institute Biomedical Technology, University of Gent, Belgium.

出版信息

J Biomech. 2000 Mar;33(3):299-306. doi: 10.1016/s0021-9290(99)00180-3.

Abstract

Pressure and flow have been measured simultaneously at six locations along the aorta of an anatomically correct 1:1 scale hydraulic elastic tube model of the arterial tree. Our results suggest a discrete reflection point at the level of the renal arteries based on (i) the quarter-wavelength formula and (ii) the comparison of foot-to-foot (c(ff)) and apparent phase velocity (c(app)). However, separation of the pressure wave into an incident and reflected wave at all six locations indicates continuous reflection: a reflected wave is generated at each location as the forward wave passes by. We did a further analysis using a mathematical transmission line model with a simple tapering geometry (length 50 cm, 31 and 11 mm proximal and distal diameter, respectively) for a low (0.32 ml/mmHg), normal (1.6 ml mmHg) and high (8 ml/mmHg) value of total arterial compliance. Using the quarter-wavelength formula, a discrete reflection point is found at x = 33 cm, the level of the renal arteries, independent of the value of total compliance. However, local analysis comparing c(ff) and c(app) does not reveal a marked reflection site, and the analysis of incident and reflected waves merely suggests a continuous reflection. We therefore conclude that the measured in vivo aortic wave reflection indices are the result of at least two interacting phenomena: a continuous wave reflection due to tapering, and local reflections arising from branches at the level of the diaphragm. The continuous reflection is hidden in the input impedance pattern. Using the quarter-wavelength formula or the classical wave separation theory, it appears as a reflection coming from a single discrete site, confusingly also located at the level of the diaphragm. Therefore, the quarter-wavelength formula and the linear wave separation theory should be used with caution to identify wave reflection zones in the presence of tapering, i.e., in most mammalian arteries.

摘要

在一个按解剖结构精确制作的 1:1 比例的动脉树液压弹性管模型的主动脉沿线六个位置同时测量了压力和流量。我们的结果表明,基于(i)四分之一波长公式和(ii)峰峰值(c(ff))与视在相速度(c(app))的比较,在肾动脉水平存在一个离散反射点。然而,在所有六个位置将压力波分离为入射波和反射波表明存在连续反射:当正向波经过时,每个位置都会产生一个反射波。我们使用一个具有简单锥形几何形状(长度 50 厘米,近端和远端直径分别为 31 毫米和 11 毫米)的数学传输线模型,针对低(0.32 毫升/毫米汞柱)、正常(1.6 毫升/毫米汞柱)和高(8 毫升/毫米汞柱)的总动脉顺应性值进行了进一步分析。使用四分之一波长公式,在 x = 33 厘米处,即肾动脉水平发现了一个离散反射点,与总顺应性值无关。然而,比较 c(ff) 和 c(app) 的局部分析并未揭示明显的反射部位,并且入射波和反射波的分析仅表明存在连续反射。因此,我们得出结论,体内测量的主动脉波反射指数是至少两种相互作用现象的结果:由于锥形变细导致的连续波反射,以及在横膈膜水平分支产生的局部反射。连续反射隐藏在输入阻抗模式中。使用四分之一波长公式或经典波分离理论时,它表现为来自单个离散部位的反射,令人困惑的是该部位也位于横膈膜水平。因此,在存在锥形变细的情况下,即在大多数哺乳动物动脉中,应谨慎使用四分之一波长公式和线性波分离理论来识别波反射区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验