Suppr超能文献

从主动脉血流估算中心血压:算法的开发和评估。

Estimating central blood pressure from aortic flow: development and assessment of algorithms.

机构信息

Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom.

Department of Clinical Pharmacology, King's College London, King's Health Partners, London , United Kingdom.

出版信息

Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H494-H510. doi: 10.1152/ajpheart.00241.2020. Epub 2020 Oct 16.

Abstract

Central blood pressure (cBP) is a highly prognostic cardiovascular (CV) risk factor whose accurate, invasive assessment is costly and carries risks to patients. We developed and assessed novel algorithms for estimating cBP from noninvasive aortic hemodynamic data and a peripheral blood pressure measurement. These algorithms were created using three blood flow models: the two- and three-element Windkessel (0-D) models and a one-dimensional (1-D) model of the thoracic aorta. We tested new and existing methods for estimating CV parameters (left ventricular ejection time, outflow BP, arterial resistance and compliance, pulse wave velocity, and characteristic impedance) required for the cBP algorithms, using virtual (simulated) subjects ( = 19,646) for which reference CV parameters were known exactly. We then tested the cBP algorithms using virtual subjects ( = 4,064), for which reference cBP were available free of measurement error, and clinical datasets containing invasive ( = 10) and noninvasive ( = 171) reference cBP waves across a wide range of CV conditions. The 1-D algorithm outperformed the 0-D algorithms when the aortic vascular geometry was available, achieving central systolic blood pressure (cSBP) errors ≤ 2.1 ± 9.7 mmHg and root-mean-square errors (RMSEs) ≤ 6.4 ± 2.8 mmHg against invasive reference cBP waves ( = 10). When the aortic geometry was unavailable, the three-element 0-D algorithm achieved cSBP errors ≤ 6.0 ± 4.7 mmHg and RMSEs ≤ 5.9 ± 2.4 mmHg against noninvasive reference cBP waves ( = 171), outperforming the two-element 0-D algorithm. All CV parameters were estimated with mean percentage errors ≤ 8.2%, except for the aortic characteristic impedance (≤13.4%), which affected the three-element 0-D algorithm's performance. The freely available algorithms developed in this work enable fast and accurate calculation of the cBP wave and CV parameters in datasets containing noninvasive ultrasound or magnetic resonance imaging data. First, our proposed methods for CV parameter estimation and a comprehensive set of methods from the literature were tested using in silico and clinical datasets. Second, optimized algorithms for estimating cBP from aortic flow were developed and tested for a wide range of cBP morphologies, including catheter cBP data. Third, a dataset of simulated cBP waves was created using a three-element Windkessel model. Fourth, the Windkessel model dataset and optimized algorithms are freely available.

摘要

中心血压(cBP)是一种高度预测心血管(CV)风险的因素,其准确、侵入性评估既昂贵又会给患者带来风险。我们开发并评估了从无创主动脉血流动力学数据和外周血压测量中估算 cBP 的新算法。这些算法是使用三种血流模型开发的:二元件和三元件风箱(0-D)模型以及胸主动脉的一维(1-D)模型。我们使用虚拟(模拟)受试者(n=19646)测试了用于 cBP 算法的估计 CV 参数(左心室射血时间、流出血压、动脉阻力和顺应性、脉搏波速度和特征阻抗)的新方法和现有方法,这些受试者的参考 CV 参数是准确的。然后,我们使用虚拟受试者(n=4064)测试了 cBP 算法,这些受试者的参考 cBP 是在没有测量误差的情况下获得的,并且还使用了包含广泛 CV 条件下的侵入性(n=10)和非侵入性(n=171)参考 cBP 波的临床数据集。当主动脉血管几何形状可用时,1-D 算法优于 0-D 算法,中心收缩压(cSBP)误差≤2.1±9.7mmHg,均方根误差(RMSE)≤6.4±2.8mmHg,与侵入性参考 cBP 波(n=10)相比。当主动脉几何形状不可用时,三元件 0-D 算法实现 cSBP 误差≤6.0±4.7mmHg,RMSE 误差≤5.9±2.4mmHg,与非侵入性参考 cBP 波(n=171)相比,优于二元件 0-D 算法。除了主动脉特征阻抗(≤13.4%),所有 CV 参数的估计平均百分比误差均≤8.2%,这影响了三元件 0-D 算法的性能。在包含非侵入性超声或磁共振成像数据的数据集,本文开发的自由可用算法能够快速准确地计算 cBP 波和 CV 参数。首先,我们使用体内数据集和临床数据集测试了 CV 参数估计的建议方法和文献中的一套综合方法。其次,为了广泛的 cBP 形态,包括导管 cBP 数据,我们开发并测试了从主动脉流量估算 cBP 的优化算法。第三,我们使用三元件风箱模型创建了一个模拟 cBP 波的数据集。第四,风箱模型数据集和优化算法是免费提供的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c1/7612539/5901e1dfc6f3/EMS143859-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验