Deng X, Ruvolo P, Carr B, May W S
University of Florida Shands Cancer Center, Gainesville, FL 32610-0232, USA.
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1578-83. doi: 10.1073/pnas.97.4.1578.
Bcl2 phosphorylation at Ser-70 may be required for the full and potent suppression of apoptosis in IL-3-dependent myeloid cells and can result from agonist activation of mitochondrial protein kinase C (PKC). Paradoxically, expression of exogenous Bcl2 can protect parental cells from apoptosis induced by the potent PKC inhibitor, staurosporine (stauro). High concentrations of stauro of up to 1 microM only partially inhibit IL-3-stimulated Bcl2 phosphorylation but completely block PKC-mediated Bcl2 phosphorylation in vitro. These data indicate a role for a stauro-resistant Bcl2 kinase (SRK). We show that aurintricarboxylic acid (ATA), a nonpeptide activator of cellular MEK/mitogen-activated protein kinase (MAPK) kinase, can induce Ser-70 phosphorylation of Bcl2 and support survival of cells expressing wild-type but not the phosphorylation-incompetent S70A mutant Bcl2. A role for a MEK/MAPK as a responsible SRK was implicated because the highly specific MEK/MAPK inhibitor, PD98059, also can only partially inhibit IL-3-induced Bcl2 phosphorylation, whereas the combination of PD98059 and stauro completely blocks phosphorylation and synergistically enhances apoptosis. p44MAPK/extracellular signal-regulated kinase 1 (ERK1) and p42 MAPK/ERK2 are activated by IL-3, colocalize with mitochondrial Bcl2, and can directly phosphorylate Bcl2 on Ser-70 in a stauro-resistant manner both in vitro and in vivo. These findings suggest a role for the ERK1/2 kinases as SRKs. Thus, the SRKs can serve to functionally link the IL-3-stimulated proliferative and survival signaling pathways and, in a novel capacity, may explain how Bcl2 can suppress stauro-induced apoptosis. In addition, although the mechanism of regulation of Bcl2 by phosphorylation is not yet clear, our results indicate that phosphorylation may functionally stabilize the Bcl2-Bax heterodimerization.
在白细胞介素-3依赖的髓样细胞中,Bcl2在丝氨酸-70位点的磷酸化可能是完全且有效地抑制细胞凋亡所必需的,并且这可能源于线粒体蛋白激酶C(PKC)的激动剂激活。矛盾的是,外源性Bcl2的表达可以保护亲代细胞免受强效PKC抑制剂星形孢菌素(stauro)诱导的细胞凋亡。高达1微摩尔的高浓度星形孢菌素仅部分抑制白细胞介素-3刺激的Bcl2磷酸化,但在体外完全阻断PKC介导的Bcl2磷酸化。这些数据表明存在一种对星形孢菌素耐药的Bcl2激酶(SRK)。我们发现金精三羧酸(ATA),一种细胞MEK/丝裂原活化蛋白激酶(MAPK)激酶的非肽激活剂,可以诱导Bcl2的丝氨酸-70磷酸化,并支持表达野生型而非磷酸化无能力的S70A突变体Bcl2的细胞存活。由于高度特异性的MEK/MAPK抑制剂PD98059也只能部分抑制白细胞介素-3诱导的Bcl2磷酸化,而PD98059和星形孢菌素的组合完全阻断磷酸化并协同增强细胞凋亡,因此暗示了MEK/MAPK作为负责的SRK的作用。p44MAPK/细胞外信号调节激酶1(ERK1)和p42 MAPK/ERK2被白细胞介素-3激活,与线粒体Bcl2共定位,并且在体外和体内都能以对星形孢菌素耐药的方式直接在丝氨酸-70位点磷酸化Bcl2。这些发现表明ERK1/2激酶作为SRK的作用。因此,SRK可以在功能上连接白细胞介素-3刺激的增殖和存活信号通路,并且以一种新的能力,可能解释Bcl2如何抑制星形孢菌素诱导的细胞凋亡。此外,尽管Bcl2磷酸化调节的机制尚不清楚,但我们的结果表明磷酸化可能在功能上稳定Bcl2 - Bax异二聚体化。