Ruvolo P P, Deng X, Carr B K, May W S
Sealy Center for Oncology and Hematology and the Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA.
J Biol Chem. 1998 Sep 25;273(39):25436-42. doi: 10.1074/jbc.273.39.25436.
Phosphorylation of Bcl2 at serine 70 may result from activation of a classic protein kinase C (PKC) isoform and is required for functional suppression of apoptosis by Bcl2 in murine growth factor-dependent cell lines (Ito, T., Deng, X., Carr, B., and May, W. S. (1997) J. Biol. Chem. 272, 11671-11673). Human pre-B REH cells express high levels of Bcl2 yet remain sensitive to the chemotherapeutic agents etoposide, cytosine arabinoside, and Adriamycin. In contrast, myeloid leukemia-derived HL60 cells express less than half the level of Bcl-2 but are >10-fold more resistant to apoptosis induced by these drugs. The mechanism responsible for this apparent dichotomy appears to involve a deficiency of mitochondrial PKCalpha since 1) HL60 but not REH cells contain highly phosphorylated Bcl2; 2) PKCalpha is the only classical isoform co-localized with Bcl2 in HL60 but not REH mitochondrial membranes; 3) the natural product and potent PKC activator bryostatin-1 induces mitochondrial localization of PKCalpha in association with Bcl2 phosphorylation and increased REH cell resistance to drug-induced apoptosis; 4) PKCalpha can directly phosphorylate wild-type but not phosphorylation-negative and loss of function S70A Bcl2 in vitro; 5) stable, forced expression of exogenous PKCalpha induces mitochondrial localization of PKCalpha, increased Bcl2 phosphorylation and a >10-fold increase in resistance to drug-induced cell death; and () PKCalpha-transduced cells remain highly sensitive to staurosporine, a potent PKC inhibitor. Furthermore, treatment of the PKCalpha transformants with bryostatin-1 leads to even higher levels of mitochondrial PKCalpha, Bcl2 phosphorylation, and REH cell survival following chemotherapy. While these findings strongly support a role for PKCalpha as a functional Bcl2 kinase that can enhance cell resistance to antileukemic chemotherapy, they do not exclude the possibility that another Bcl2 kinase(s) may also exist. Collectively, these findings identify a functional role for PKCalpha in Bcl2 phosphorylation and in resistance to chemotherapy and suggest a novel target for antileukemic strategies.
Bcl2在丝氨酸70位点的磷酸化可能源于经典蛋白激酶C(PKC)同工型的激活,并且在鼠生长因子依赖性细胞系中,Bcl2对细胞凋亡的功能抑制需要这种磷酸化(伊藤,T.,邓,X.,卡尔,B.,和梅,W.S.(1997年)《生物化学杂志》272,11671 - 11673)。人前B淋巴细胞系REH细胞高表达Bcl2,但对化疗药物依托泊苷、阿糖胞苷和阿霉素仍敏感。相比之下,髓系白血病来源的HL60细胞表达的Bcl - 2水平不到一半,但对这些药物诱导的细胞凋亡的抗性却高10倍以上。造成这种明显差异的机制似乎涉及线粒体PKCalpha的缺乏,因为:1)HL60细胞而非REH细胞含有高度磷酸化的Bcl2;2)PKCalpha是唯一与Bcl2共定位于HL60线粒体膜而非REH线粒体膜的经典同工型;3)天然产物和有效的PKC激活剂苔藓抑素-1诱导PKCalpha的线粒体定位,伴随Bcl2磷酸化增加以及REH细胞对药物诱导凋亡的抗性增强;4)PKCalpha在体外可直接磷酸化野生型Bcl2,但不能磷酸化磷酸化阴性和功能缺失的S70A Bcl2;5)稳定、强制表达外源性PKCalpha诱导PKCalpha的线粒体定位,增加Bcl2磷酸化,并使对药物诱导细胞死亡的抗性增加10倍以上;以及()PKCalpha转导的细胞对强效PKC抑制剂星形孢菌素仍高度敏感。此外,用苔藓抑素-1处理PKCalpha转化细胞会导致化疗后线粒体PKCalpha、Bcl2磷酸化水平更高,REH细胞存活率更高。虽然这些发现有力地支持了PKCalpha作为功能性Bcl2激酶可增强细胞对抗白血病化疗的抗性这一作用,但它们并不排除可能还存在其他Bcl2激酶的可能性。总体而言,这些发现确定了PKCalpha在Bcl2磷酸化及化疗抗性中的功能作用,并提示了抗白血病策略的一个新靶点。