Suppr超能文献

水对血红素Fe(3+)/Fe(2+)还原电位的影响。

The effect of water on the Fe(3+)/Fe(2+) reduction potential of heme.

作者信息

Edholm O, Nordlander P, Chen W, Ohlsson P I, Smith M L, Paul J

机构信息

Department of Theoretical Physics, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.

出版信息

Biochem Biophys Res Commun. 2000 Feb 24;268(3):683-7. doi: 10.1006/bbrc.2000.2201.

Abstract

Hemeproteins can act as catalysts, oxygen carriers or electron conductors. The ferric/ferrous reduction potential E(m7) of iron in the center of the prosthetic group ranges from negative values for peroxidases to an extreme positive value for cytochrome a(3) with Hb and Mb in the middle [1]. Proteins exercise their influence on E(m7) in several ways: via substituents at the periphery of the chelate structure, via the proximal ligand, and via interaction with the surrounding medium, amino acid side chains, or polar solvents. Work on recombined proteins and 2,4-substituted free hemes documented that the first two effects are additive [2]. For the third effect, models of the dielectric media on a molecular level have been successfully applied [3-5]. E(m7) has also been empirically correlated to the degree of heme exposure to water [6-8]. The apoprotein/porphyrin and water/porphyrin interfaces are complementary since water molecules fill any empty space in the crevice and surround any pertinent part of heme outside the protein boundary. The present work links to this idea by a combination of statistical mechanics simulations and quantum mechanical calculations comparing heme in water with heme in an apolar environment. Our results show that polarization of the porphyrin pi-electron cloud by the field from water dipoles influences E(m7). The dominant effect of this and other determinates of iron electron availability is perturbations of delocalized electron density in the porphyrin chelate, reproduced by a model where the prosthetic group is treated as a disc of uniform electron density. The present work is also of interest since the interfacial energy constitutes the main barrier for heme-protein separation [9-11].

摘要

血红素蛋白可作为催化剂、氧载体或电子导体。辅基中心铁的三价/二价还原电位E(m7)范围从过氧化物酶的负值到细胞色素a(3)的极高正值,血红蛋白和肌红蛋白的E(m7)处于中间值[1]。蛋白质通过多种方式对E(m7)产生影响:通过螯合结构外围的取代基、通过近端配体以及通过与周围介质、氨基酸侧链或极性溶剂的相互作用。对重组蛋白和2,4 - 取代游离血红素的研究表明,前两种效应是可加的[2]。对于第三种效应,分子水平的介电介质模型已得到成功应用[3 - 5]。E(m7)在经验上也与血红素暴露于水的程度相关[6 - 8]。脱辅基蛋白/卟啉界面和水/卟啉界面是互补的,因为水分子填充了缝隙中的任何空隙,并包围了蛋白质边界外血红素的任何相关部分。本研究通过统计力学模拟和量子力学计算相结合的方法,将水中的血红素与非极性环境中的血红素进行比较,与这一观点相关联。我们的结果表明,水偶极子场对卟啉π电子云的极化会影响E(m7)。这种以及其他影响铁电子可用性的因素的主要作用是卟啉螯合物中离域电子密度的扰动,这可以通过一个将辅基视为具有均匀电子密度的圆盘的模型来重现。本研究也具有重要意义,因为界面能是血红素 - 蛋白质分离的主要障碍[9 - 11]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验