Reddi Amit R, Reedy Charles J, Mui Steven, Gibney Brian R
Department of Chemistry, Columbia University, 3000 Broadway, MC 3121, New York, New York 10027, USA.
Biochemistry. 2007 Jan 9;46(1):291-305. doi: 10.1021/bi061607g.
To study the engineering requirements for proton pumping in energy-converting enzymes such as cytochrome c oxidase, the thermodynamics and mechanisms of proton-coupled electron transfer in two designed heme proteins are elucidated. Both heme protein maquettes chosen, heme b-[H10A24]2 and heme b-[delta7-His]2, are four-alpha-helix bundles that display pH-dependent heme midpoint potential modulations, or redox-Bohr effects. Detailed equilibrium binding studies of ferric and ferrous heme b with these maquettes allow the individual contributions of heme-protein association, iron-histidine ligation, and heme-protein electrostatics to be elucidated. These data demonstrate that the larger, less well-structured [H10A24]2 binds heme b in both oxidation states tighter than the smaller and more well-structured [Delta7-His]2 due to a stronger porphyrin-protein hydrophobic interaction. The 66 mV (1.5 kcal/mol) difference in their heme reduction potentials observed at pH 8.0 is due mostly to stabilization of ferrous heme in [H10A24]2 relative to [delta7-His]2. The data indicate that porphyrin-protein hydrophobic interactions and heme iron coordination are responsible for the Kd value of 37 nM for the heme b-[delta7-His]2 scaffold, while the affinity of heme b for [H10A24]2 is 20-fold tighter due to a combination of porphyrin-protein hydrophobic interactions, iron coordination, and electrostatic effects. The data also illustrate that the contribution of bis-His coordination to ferrous heme protein affinity is limited, <3.0 kcal/mol. The 1H+/1e- redox-Bohr effect of heme b-[H10A24]2 is due to the greater absolute stabilization of the ferric heme (4.1 kcal/mol) compared to the ferrous heme (1.4 kcal/mol) binding upon glutamic acid deprotonation, i.e., an electrostatic response mechanism. The 2H+/1e- redox-Bohr effect observed for heme b-[delta7-His]2 is due to histidine protonation and histidine dissociation of ferrous heme b upon reduction, i.e., a ligand loss mechanism. These results indicate that the contribution of porphyrin-protein hydrophobic interactions to heme affinity is critical to maintaining the heme bound in both oxidation states and eliciting an electrostatic response from these designed heme protein scaffolds.
为了研究能量转换酶(如细胞色素c氧化酶)中质子泵浦的工程要求,阐明了两种设计的血红素蛋白中质子耦合电子转移的热力学和机制。所选择的两种血红素蛋白模型,即血红素b-[H10A24]2和血红素b-[delta7-组氨酸]2,都是四螺旋束,表现出pH依赖性的血红素中点电位调制,即氧化还原玻尔效应。对这些模型与三价铁和二价铁血红素b进行详细的平衡结合研究,可以阐明血红素-蛋白质缔合、铁-组氨酸配位以及血红素-蛋白质静电作用的各自贡献。这些数据表明,由于更强的卟啉-蛋白质疏水相互作用,更大、结构更不完善的[H10A24]2在两种氧化态下结合血红素b都比更小、结构更完善的[Delta7-组氨酸]2更紧密。在pH 8.0时观察到它们血红素还原电位有66 mV(1.5千卡/摩尔)的差异,这主要是由于相对于[delta7-组氨酸]2,[H10A24]2中二价铁血红素更稳定。数据表明,卟啉-蛋白质疏水相互作用和血红素铁配位导致血红素b-[delta7-组氨酸]2支架的解离常数Kd值为37 nM,而由于卟啉-蛋白质疏水相互作用、铁配位和静电效应的综合作用,血红素b对[H10A24]2的亲和力要紧密20倍。数据还表明,双组氨酸配位对二价铁血红素蛋白亲和力的贡献有限,<3.0千卡/摩尔。血红素b-[H10A24]2的1H+/1e-氧化还原玻尔效应是由于谷氨酸去质子化时三价铁血红素(4.1千卡/摩尔)比二价铁血红素(1.4千卡/摩尔)结合时具有更大的绝对稳定性,即静电响应机制。在血红素b-[delta7-组氨酸]2中观察到的2H+/1e-氧化还原玻尔效应是由于二价铁血红素b还原时组氨酸质子化和组氨酸解离,即配体损失机制。这些结果表明,卟啉-蛋白质疏水相互作用对血红素亲和力的贡献对于维持两种氧化态下的血红素结合以及引发这些设计的血红素蛋白支架的静电响应至关重要。