Suppr超能文献

脂质预转变模型:波纹形成与链熔化转变的耦合

A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition.

作者信息

Heimburg T

机构信息

Max-Planck Institut für biophysikalische Chemie, 37070 Göttingen, Germany.

出版信息

Biophys J. 2000 Mar;78(3):1154-65. doi: 10.1016/S0006-3495(00)76673-2.

Abstract

Below the thermotropic chain-melting transition, lipid membrane c(P) traces display a transition of low enthalpy called the lipid pretransition. It is linked to the formation of periodic membrane ripples. In the literature, these two transitions are usually regarded as independent events. Here, we present a model that is based on the assumption that both pretransition and main transition are caused by the same physical effect, namely chain melting. The splitting of the melting process into two peaks is found to be a consequence of the coupling of structural changes and chain-melting events. On the basis of this concept, we performed Monte Carlo simulations using two coupled monolayer lattices. In this calculation, ripples are considered to be one-dimensional defects of fluid lipid molecules. Because lipids change their area by approximately 24% upon melting, line defects are the only ones that are topologically possible in a triangular lattice. The formation of a fluid line defect on one monolayer leads to a local bending of the membrane. Geometric constraints result in the formation of periodic patterns of gel and fluid domains. This model, for the first time, is able to predict heat capacity profiles, which are comparable to the experimental c(P) traces that we obtained using calorimetry. The basic assumptions are in agreement with a large number of experimental observations.

摘要

在热致链熔化转变温度以下,脂质膜的c(P)曲线显示出一个低焓转变,称为脂质预转变。它与周期性膜波纹的形成有关。在文献中,这两个转变通常被视为独立事件。在此,我们提出一个模型,该模型基于这样的假设:预转变和主转变都是由相同的物理效应,即链熔化引起的。发现熔化过程分裂为两个峰是结构变化与链熔化事件耦合的结果。基于这一概念,我们使用两个耦合的单层晶格进行了蒙特卡罗模拟。在该计算中,波纹被视为流体脂质分子的一维缺陷。由于脂质在熔化时其面积大约变化24%,线缺陷是三角晶格中唯一拓扑上可能的缺陷。一个单层上流体线缺陷的形成会导致膜的局部弯曲。几何约束导致凝胶域和流体域的周期性图案形成。该模型首次能够预测热容量曲线,其与我们使用量热法获得的实验c(P)曲线相当。基本假设与大量实验观察结果一致。

相似文献

1
A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition.
Biophys J. 2000 Mar;78(3):1154-65. doi: 10.1016/S0006-3495(00)76673-2.
2
Lipid bilayer pre-transition as the beginning of the melting process.
Biochim Biophys Acta. 2009 May;1788(5):954-63. doi: 10.1016/j.bbamem.2009.01.007. Epub 2009 Jan 27.
3
Melting of individual lipid components in binary lipid mixtures studied by FTIR spectroscopy, DSC and Monte Carlo simulations.
Biochim Biophys Acta. 2009 Mar;1788(3):600-7. doi: 10.1016/j.bbamem.2008.12.003. Epub 2008 Dec 14.
4
Relaxation kinetics of lipid membranes and its relation to the heat capacity.
Biophys J. 2002 Jan;82(1 Pt 1):299-309. doi: 10.1016/S0006-3495(02)75395-2.
8
10
Microthermodynamic interpretation of fluid states from FTIR measurements in lipid membranes: a Monte Carlo study.
J Phys Chem B. 2014 Sep 4;118(35):10436-43. doi: 10.1021/jp5044078. Epub 2014 Aug 25.

引用本文的文献

1
Doniach Lattice Gas on Bipartite Lattices in the Mean-Field Approximation.
Langmuir. 2025 May 20;41(19):11838-11853. doi: 10.1021/acs.langmuir.4c04225. Epub 2025 May 9.
2
Flower-shaped 2D crystals grown in curved fluid vesicle membranes.
Nat Commun. 2024 Apr 24;15(1):3442. doi: 10.1038/s41467-024-47844-x.
3
Efficient Drug Loading Method for Poorly Water-Soluble Drug into Bicelles through Passive Diffusion.
Mol Pharm. 2023 Nov 6;20(11):5701-5713. doi: 10.1021/acs.molpharmaceut.3c00562. Epub 2023 Oct 12.
4
Preparation and molecular interaction of organic solvent-free piperine pro-liposome from soy lecithin.
Heliyon. 2023 May 25;9(6):e16674. doi: 10.1016/j.heliyon.2023.e16674. eCollection 2023 Jun.
6
Miscibility of Phosphatidylcholines in Bilayers: Effect of Acyl Chain Unsaturation.
Membranes (Basel). 2023 Apr 5;13(4):411. doi: 10.3390/membranes13040411.
7
Elucidating lipid conformations in the ripple phase: Machine learning reveals four lipid populations.
Biophys J. 2023 Jan 17;122(2):442-450. doi: 10.1016/j.bpj.2022.11.024. Epub 2022 Nov 21.
8
Nanovesicles drive a tunable dynamical arrest of microparticles.
RSC Adv. 2021 Jul 9;11(39):24190-24195. doi: 10.1039/d1ra04252a. eCollection 2021 Jul 6.
9
Effect of Protocatechuic Acid Ethyl Ester on Biomembrane Models: Multilamellar Vesicles and Monolayers.
Membranes (Basel). 2022 Feb 28;12(3):283. doi: 10.3390/membranes12030283.
10
Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins.
Nano Res. 2015 Mar;8(3):774-789. doi: 10.1007/s12274-014-0560-6. Epub 2014 Oct 23.

本文引用的文献

1
Binary phase diagram of hydrated dimyristoylglycerol-dimyristoylphosphatidylcholine mixtures.
Biophys J. 1992 Nov;63(5):1369-78. doi: 10.1016/S0006-3495(92)81714-9.
2
Network formation of lipid membranes: triggering structural transitions by chain melting.
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14312-7. doi: 10.1073/pnas.96.25.14312.
5
Theory of "Ripple" Phases of Lipid Bilayers.
Phys Rev Lett. 1993 Sep 6;71(10):1565-1568. doi: 10.1103/PhysRevLett.71.1565.
6
Statistical-Mechanical Theory of the Ripple Phase of Lipid Bilayers.
Phys Rev Lett. 1990 Aug 13;65(7):931-934. doi: 10.1103/PhysRevLett.65.931.
7
Amplitude, wave form, and temperature dependence of bilayer ripples in the P beta ' phase.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):R3044-R3047. doi: 10.1103/physreve.53.r3044.
8
Effect of intermonolayer coupling on the phase behavior of lipid bilayers.
Phys Rev A. 1992 Nov 15;46(10):6707-6713. doi: 10.1103/physreva.46.6707.
9
Phase behavior of pure lipid bilayers with mismatch interactions.
Phys Rev A. 1992 May 15;45(10):7560-7567. doi: 10.1103/physreva.45.7560.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验