Suppr超能文献

Protonation of lysine residues inverts cation/anion selectivity in a model channel.

作者信息

Borisenko V, Sansom M S, Woolley G A

机构信息

Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada.

出版信息

Biophys J. 2000 Mar;78(3):1335-48. doi: 10.1016/s0006-3495(00)76688-4.

Abstract

A dimeric alamethicin analog with lysine at position 18 in the sequence (alm-K18) was previously shown to form stable anion-selective channels in membranes at pH 7.0 [Starostin, A. V., R. Butan, V. Borisenko, D. A. James, H. Wenschuh, M. S. Sansom, and G. A. Woolley. 1999. Biochemistry. 38:6144-6150]. To probe the charge state of the conducting channel and how this might influence cation versus anion selectivity, we performed a series of single-channel selectivity measurements at different pH values. At pH 7.0 and below, only anion-selective channels were found with P(K(+))/P(Cl(-)) = 0. 25. From pH 8-10, a mixture of anion-selective, non-selective, and cation-selective channels was found. At pH > 11 only cation-selective channels were found with P(K(+))/P(Cl(-)) = 4. In contrast, native alamethicin-Q18 channels (with Gln in place of Lys at position 18) were cation-selective (P(K(+))/P(Cl(-)) = 4) at all pH values. Continuum electrostatics calculations were then carried out using an octameric model of the alm-K18 channel embedded in a low dielectric slab to simulate a membrane. Although the calculations can account for the apparent pK(a) of the channel, they fail to correctly predict the degree of selectivity. Although a switch from cation- to anion-selectivity as the channel becomes protonated is indicated, the degree of anion-selectivity is severely overestimated, suggesting that the continuum approach does not adequately represent some aspect of the electrostatics of permeation in these channels. Side-chain conformational changes upon protonation, conformational changes, and deprotonation caused by permeating cations and counterion binding by lysine residues upon protonation are considered as possible sources of the overestimation.

摘要

相似文献

1
Protonation of lysine residues inverts cation/anion selectivity in a model channel.
Biophys J. 2000 Mar;78(3):1335-48. doi: 10.1016/s0006-3495(00)76688-4.
2
Understanding pH-dependent selectivity of alamethicin K18 channels by computer simulation.
Biophys J. 2003 Mar;84(3):1464-9. doi: 10.1016/S0006-3495(03)74959-5.
3
An anion-selective analogue of the channel-forming peptide alamethicin.
Biochemistry. 1999 May 11;38(19):6144-50. doi: 10.1021/bi9826355.
4
Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7.
Bioelectrochemistry. 2007 May;70(2):380-6. doi: 10.1016/j.bioelechem.2006.05.005. Epub 2006 May 23.
6
Engineering charge selectivity in model ion channels.
Bioorg Med Chem. 2004 Mar 15;12(6):1337-42. doi: 10.1016/j.bmc.2003.06.005.
7
Engineering charge selectivity in alamethicin channels.
Novartis Found Symp. 1999;225:62-9; discussion 69-73. doi: 10.1002/9780470515716.ch5.
8
9
Alamethicin channels in a membrane: molecular dynamics simulations.
Faraday Discuss. 1998(111):209-23; discussion 225-46. doi: 10.1039/a806266h.

引用本文的文献

2
Synthesis and characterization of bis(4-amino-2-bromo-6-methoxy)azobenzene derivatives.
Beilstein J Org Chem. 2019 Dec 30;15:3000-3008. doi: 10.3762/bjoc.15.296. eCollection 2019.
4
Lysine methylation strategies for characterizing protein conformations by NMR.
J Biomol NMR. 2012 Oct;54(2):199-209. doi: 10.1007/s10858-012-9664-z. Epub 2012 Sep 8.
5
Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction.
Biophys J. 2006 Feb 15;90(4):1202-11. doi: 10.1529/biophysj.105.072298. Epub 2005 Nov 18.
6
Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
Biophys J. 2003 Apr;84(4):2242-55. doi: 10.1016/S0006-3495(03)75030-9.
7
Understanding pH-dependent selectivity of alamethicin K18 channels by computer simulation.
Biophys J. 2003 Mar;84(3):1464-9. doi: 10.1016/S0006-3495(03)74959-5.
8
Analysis and evaluation of channel models: simulations of alamethicin.
Biophys J. 2002 Nov;83(5):2393-407. doi: 10.1016/s0006-3495(02)75253-3.
9
Modifications of alamethicin ion channels by substitution of Glu-7 for Gln-7.
Biophys J. 2002 Jul;83(1):219-28. doi: 10.1016/S0006-3495(02)75163-1.
10
Surface potentials and the calculated selectivity of ion channels.
Biophys J. 2002 Jan;82(1 Pt 1):156-9. doi: 10.1016/S0006-3495(02)75382-4.

本文引用的文献

1
Artificial Organic Host Molecules for Anions.
Chem Rev. 1997 Aug 5;97(5):1609-1646. doi: 10.1021/cr9603845.
2
3
An anion-selective analogue of the channel-forming peptide alamethicin.
Biochemistry. 1999 May 11;38(19):6144-50. doi: 10.1021/bi9826355.
4
7
Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae.
Structure. 1999 Apr 15;7(4):425-34. doi: 10.1016/s0969-2126(99)80055-0.
8
An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6.
9
Exploration of the structural features defining the conduction properties of a synthetic ion channel.
Biophys J. 1999 Feb;76(2):618-30. doi: 10.1016/S0006-3495(99)77230-9.
10
Carriers and channels: current progress and future prospects.
Curr Opin Chem Biol. 1998 Dec;2(6):711-6. doi: 10.1016/s1367-5931(98)80108-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验