Northrop D B, Cho Y K
Division of Pharmaceutical Sciences, School of Pharmacy, 425 North Charter Street, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Biochemistry. 2000 Mar 7;39(9):2406-12. doi: 10.1021/bi992537z.
Moderate pressure accelerates hydride transfer catalyzed by yeast alcohol dehydrogenase, indicative of a large negative volume of activation [Cho and Northrop (1999) Biochemistry 38, 7470-7475]. A comparison of the effects of pressure on the oxidation of normal versus dideuteriobenzyl alcohol generates a monophasic decrease in the intrinsic isotope effect; therefore, the volume of activation for the transition-state of deuteride transfer must be even more negative, by 10.4 mL/mol. This finding appears consistent with hydrogen tunneling previously proposed for this dehydrogenase [Cha, Y., Murray, C. J., and Klinman, J. P. (1989) Science 243, 1325-1330]. However, a global fit of the primary data shows that the entire isotope effect arises from a transition-state phenomenon, unlike normal isotope effects, which arise from different vibrational frequencies in reactant states, and tunneling isotope effects, which arise from a mixture of both states. Assuming the phenomenon is tunneling, the isotopic data are consistent with a Bell tunneling correction factor of Q(H) = 12 and an imaginary frequency of nu(H) = 1220 cm(-1), the first so calculated from experimental enzymatic data. This excessively large correction factor and the large difference in the isotopic activation volumes, plus the low isotope effects at extrapolated pressures, challenge traditional applications of physical organic chemistry and transition-state theory to enzymatic catalysis. They suggest instead that something other than transition-state stabilization or tunneling is responsible for the rate acceleration, something unique to the enzymatic transition state that does not occur in nonenzymatic reactions. Arguments for the vibrational model of coupled atomic motions and the fluctuating enzyme model of protein domain motion are put forward as possible interpretations.
适度压力可加速酵母醇脱氢酶催化的氢化物转移,这表明活化体积存在较大的负值[赵和诺思罗普(1999年)《生物化学》38卷,7470 - 7475页]。比较压力对正常苄醇与二氘代苄醇氧化的影响,发现本征同位素效应呈单相下降;因此,氘化物转移过渡态的活化体积必然更负,相差10.4毫升/摩尔。这一发现似乎与先前针对该脱氢酶提出的氢隧穿现象一致[查,Y.、默里,C. J.和克林曼,J. P.(1989年)《科学》243卷,1325 - 1330页]。然而,对原始数据的整体拟合表明,整个同位素效应源于一种过渡态现象,这与正常同位素效应不同,正常同位素效应源于反应物状态下不同的振动频率,而隧穿同位素效应源于两种状态的混合。假设该现象为隧穿,同位素数据与贝尔隧穿校正因子Q(H)=12以及虚频率ν(H)=1220厘米⁻¹一致,这是首次根据实验酶学数据计算得出。这个过大的校正因子以及同位素活化体积的巨大差异,再加上外推压力下较低的同位素效应,对物理有机化学和过渡态理论在酶催化中的传统应用提出了挑战。它们反而表明,除了过渡态稳定化或隧穿之外,还有其他因素导致了速率加速,这是酶促过渡态所特有的,在非酶促反应中不会出现。文中提出了耦合原子运动的振动模型和蛋白质结构域运动的波动酶模型作为可能的解释。