Hay Sam, Sutcliffe Michael J, Scrutton Nigel S
Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7ND, United Kingdom.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):507-12. doi: 10.1073/pnas.0608408104. Epub 2007 Jan 3.
Use of the pressure dependence of kinetic isotope effects, coupled with a study of their temperature dependence, as a probe for promoting motions in enzymatic hydrogen-tunneling reactions is reported. Employing morphinone reductase as our model system and by using stopped-flow methods, we measured the hydride transfer rate (a tunneling reaction) as a function of hydrostatic pressure and temperature. Increasing the pressure from 1 bar (1 bar = 100 kPa) to 2 kbar accelerates the hydride transfer reaction when both protium (from 50 to 161 s(-1) at 25 degrees C) and deuterium (12 to 31 s(-1) at 25 degrees C) are transferred. We found that the observed primary kinetic isotope effect increases with pressure (from 4.0 to 5.2 at 25 degrees C), an observation incompatible with the Bell correction model for hydrogen tunneling but consistent with a full tunneling model. By numerical modeling, we show that both the pressure and temperature dependencies of the reaction rates are consistent with the framework of the environmentally coupled tunneling model of Kuznetsov and Ulstrup [Kuznetsov AM, Ulstrup J (1999) Can J Chem 77:1085-1096], providing additional support for the role of a promoting motion in the hydride tunneling reaction in morphinone reductase. Our study demonstrates the utility of "barrier engineering" by using hydrostatic pressure as a probe for tunneling regimes in enzyme systems and provides added and independent support for the requirement of promoting motions in such tunneling reactions.
据报道,利用动力学同位素效应的压力依赖性,并结合对其温度依赖性的研究,作为探测酶促氢隧穿反应中促进运动的探针。以吗啡酮还原酶作为我们的模型系统,并采用停流方法,我们测量了氢化物转移速率(一种隧穿反应)作为静水压力和温度的函数。当氢(在25℃下从50变为161 s⁻¹)和氘(在25℃下从12变为31 s⁻¹)都发生转移时,将压力从1 bar(1 bar = 100 kPa)增加到2 kbar会加速氢化物转移反应。我们发现观察到的一级动力学同位素效应随压力增加(在25℃下从4.0增加到5.2),这一观察结果与氢隧穿的贝尔校正模型不相符,但与完全隧穿模型一致。通过数值模拟,我们表明反应速率的压力和温度依赖性都与库兹涅佐夫和乌尔斯特鲁普的环境耦合隧穿模型框架一致[库兹涅佐夫AM,乌尔斯特鲁普J(1999)加拿大化学杂志77:1085 - 1096],为促进运动在吗啡酮还原酶氢化物隧穿反应中的作用提供了额外支持。我们的研究证明了通过使用静水压力作为探测酶系统中隧穿机制的探针来进行“势垒工程”的实用性,并为这种隧穿反应中促进运动的必要性提供了额外且独立的支持。