Park Hyun, Girdaukas Gary G, Northrop Dexter B
Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
J Am Chem Soc. 2006 Feb 15;128(6):1868-72. doi: 10.1021/ja056525e.
Hydrostatic pressure causes a monophasic decrease in the (13)C primary isotope effect expressed on the oxidation of benzyl alcohol by yeast alcohol dehydrogenase. The primary isotope effect was measured by the competitive method, using whole-molecule mass spectrometry. The effect is, therefore, an expression of isotopic discrimination on the kinetic parameter V/K, which measures substrate capture. Moderate pressure increases capture by activating hydride transfer, the transition state of which must therefore have a smaller volume than the free alcohol plus the capturing form of enzyme [Cho, Y.-K.; Northrop, D. B. Biochemistry 1999, 38, 7470-7475]. The decrease in the (13)C isotope effect with increasing pressure means that the transition state for hydride transfer from the heavy atom must have an even smaller volume, measured here to be 13 mL.mol(-1). The pressure data factor the kinetic isotope effect into a semiclassical reactant-state component, with a null value of k(12)/k(13) = 1, and a transition-state component of Q(12)/Q(13) = 1.028 (borrowing Bell's nomenclature for hydrogen tunneling corrections). A similar experiment involving a deuterium isotope effect previously returned the same volume and null value, plus a pressure-sensitive isotope effect [Northrop, D. B.; Cho, Y.-K. Biochemistry 2000, 39, 2406-2412]. Consistent with precedence in the chemical literature, the latter suggested a possibility of hydrogen tunneling; however, it is unlikely that carbon can engage in significant tunneling at ambient temperature. The fact that the decrease in activation volumes for hydride transfer is equivalent when one mass unit is added to the carbon end of a scissile C-H bond and when one mass unit is added to the hydrogen end is significant and suggests a common origin.
静水压导致酵母乙醇脱氢酶氧化苄醇时所表现出的(^{13}C)初级同位素效应呈单相下降。初级同位素效应采用竞争法,通过全分子质谱进行测量。因此,该效应是对动力学参数(V/K)的同位素歧视的一种表现,(V/K)衡量底物捕获情况。适度压力通过激活氢化物转移增加捕获,因此其过渡态的体积必定小于游离醇加上酶的捕获形式的体积[赵英奎;诺思罗普,D.B.《生物化学》1999年,38卷,7470 - 7475页]。随着压力增加,(^{13}C)同位素效应下降意味着从重原子进行氢化物转移的过渡态体积必定更小,在此测得为(13 mL·mol^{-1})。压力数据将动力学同位素效应分解为一个半经典反应物态分量,其(k_{12}/k_{13}=1)的零值,以及一个(Q_{12}/Q_{13}=1.028)的过渡态分量(借用贝尔关于氢隧穿校正的命名法)。之前一个涉及氘同位素效应的类似实验得到了相同的体积和零值,以及一个对压力敏感的同位素效应[诺思罗普,D.B.;赵英奎《生物化学》2000年,39卷,2406 - 2412页]。与化学文献中的先例一致,后者暗示了氢隧穿的可能性;然而,在环境温度下碳不太可能进行显著的隧穿。当一个质量单位加到可裂解(C - H)键的碳端以及当一个质量单位加到氢端时,氢化物转移活化体积的减小是等效的,这一事实很重要,并暗示了一个共同的起源。