Suppr超能文献

论人工神经网络在肿瘤学预后和诊断分类中的误用

On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology.

作者信息

Schwarzer G, Vach W, Schumacher M

机构信息

University of Freiburg, Institute of Medical Biometry and Medical Informatics, Stefan-Meier-Strasse 26, D-79104 Freiburg, Germany.

出版信息

Stat Med. 2000 Feb 29;19(4):541-61. doi: 10.1002/(sici)1097-0258(20000229)19:4<541::aid-sim355>3.0.co;2-v.

Abstract

The application of artificial neural networks (ANNs) for prognostic and diagnostic classification in clinical medicine has become very popular. In particular, feed-forward neural networks have been used extensively, often accompanied by exaggerated statements of their potential. In this paper, the essentials of feed-forward neural networks and their statistical counterparts (that is, logistic regression models) are reviewed. We point out that the uncritical use of ANNs may lead to serious problems, such as the fitting of implausible functions to describe the probability of class membership and the underestimation of misclassification probabilities. In applications of ANNs to survival data, further difficulties arise. Finally, the results of a search in the medical literature from 1991 to 1995 on applications of ANNs in oncology and some important common mistakes are reported. It is concluded that there is no evidence so far that application of ANNs represents real progress in the field of diagnosis and prognosis in oncology.

摘要

人工神经网络(ANNs)在临床医学预后和诊断分类中的应用已变得非常普遍。特别是前馈神经网络已被广泛使用,其潜力往往伴随着夸大的表述。本文回顾了前馈神经网络及其统计对应方法(即逻辑回归模型)的要点。我们指出,不加批判地使用人工神经网络可能会导致严重问题,比如拟合不合理的函数来描述类别归属概率以及低估错误分类概率。在将人工神经网络应用于生存数据时,还会出现更多困难。最后,报告了1991年至1995年在医学文献中关于人工神经网络在肿瘤学中的应用搜索结果以及一些重要的常见错误。得出的结论是,目前尚无证据表明人工神经网络的应用在肿瘤学诊断和预后领域代表着真正的进步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验