Kötter R, Sommer F T
C. & O. Vogt Brain Research Institute, Heinrich Heine University, Düsseldorf, Germany.
Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):127-34. doi: 10.1098/rstb.2000.0553.
Anatomical connectivity is a prerequisite for cooperative interactions between cortical areas, but it has yet to be demonstrated that association fibre networks determine the macroscopical flow of activity in the cerebral cortex. To test this notion, we constructed a large-scale model of cortical areas whose interconnections were based on published anatomical data from tracing studies. Using this model we simulated the propagation of activity in response to activation of individual cortical areas and compared the resulting topographic activation patterns to electrophysiological observations on the global spread of epileptic activity following intracortical stimulation. Here we show that a neural network with connectivity derived from experimental data reproduces cortical propagation of activity significantly better than networks with different types of neighbourhood-based connectivity or random connections. Our results indicate that association fibres and their relative connection strengths are useful predictors of global topographic activation patterns in the cerebral cortex. This global structure-function relationship may open a door to explicit interpretation of cortical activation data in terms of underlying anatomical connectivity.
解剖连接性是皮质区域间协同相互作用的一个先决条件,但关联纤维网络是否决定大脑皮质中活动的宏观流动,这一点尚未得到证实。为了验证这一观点,我们构建了一个大规模的皮质区域模型,其相互连接基于已发表的追踪研究中的解剖学数据。利用这个模型,我们模拟了响应单个皮质区域激活时活动的传播,并将由此产生的地形激活模式与皮质内刺激后癫痫活动全球传播的电生理观察结果进行了比较。在这里,我们表明,一个具有源自实验数据的连接性的神经网络,比具有不同类型基于邻域的连接性或随机连接的网络,能更好地再现皮质活动的传播。我们的结果表明,关联纤维及其相对连接强度是大脑皮质中全球地形激活模式的有用预测指标。这种全局结构 - 功能关系可能为根据潜在的解剖连接性明确解释皮质激活数据打开一扇门。