Suppr超能文献

大脑皮层中解剖学连接性与活动传播之间的全局关系。

Global relationship between anatomical connectivity and activity propagation in the cerebral cortex.

作者信息

Kötter R, Sommer F T

机构信息

C. & O. Vogt Brain Research Institute, Heinrich Heine University, Düsseldorf, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):127-34. doi: 10.1098/rstb.2000.0553.

Abstract

Anatomical connectivity is a prerequisite for cooperative interactions between cortical areas, but it has yet to be demonstrated that association fibre networks determine the macroscopical flow of activity in the cerebral cortex. To test this notion, we constructed a large-scale model of cortical areas whose interconnections were based on published anatomical data from tracing studies. Using this model we simulated the propagation of activity in response to activation of individual cortical areas and compared the resulting topographic activation patterns to electrophysiological observations on the global spread of epileptic activity following intracortical stimulation. Here we show that a neural network with connectivity derived from experimental data reproduces cortical propagation of activity significantly better than networks with different types of neighbourhood-based connectivity or random connections. Our results indicate that association fibres and their relative connection strengths are useful predictors of global topographic activation patterns in the cerebral cortex. This global structure-function relationship may open a door to explicit interpretation of cortical activation data in terms of underlying anatomical connectivity.

摘要

解剖连接性是皮质区域间协同相互作用的一个先决条件,但关联纤维网络是否决定大脑皮质中活动的宏观流动,这一点尚未得到证实。为了验证这一观点,我们构建了一个大规模的皮质区域模型,其相互连接基于已发表的追踪研究中的解剖学数据。利用这个模型,我们模拟了响应单个皮质区域激活时活动的传播,并将由此产生的地形激活模式与皮质内刺激后癫痫活动全球传播的电生理观察结果进行了比较。在这里,我们表明,一个具有源自实验数据的连接性的神经网络,比具有不同类型基于邻域的连接性或随机连接的网络,能更好地再现皮质活动的传播。我们的结果表明,关联纤维及其相对连接强度是大脑皮质中全球地形激活模式的有用预测指标。这种全局结构 - 功能关系可能为根据潜在的解剖连接性明确解释皮质激活数据打开一扇门。

相似文献

1
Global relationship between anatomical connectivity and activity propagation in the cerebral cortex.
Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):127-34. doi: 10.1098/rstb.2000.0553.
2
Uniformity, specificity and variability of corticocortical connectivity.
Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):7-20. doi: 10.1098/rstb.2000.0546.
3
Realistically coupled neural mass models can generate EEG rhythms.
Neural Comput. 2007 Feb;19(2):478-512. doi: 10.1162/neco.2007.19.2.478.
5
Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat.
Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):91-110. doi: 10.1098/rstb.2000.0551.
7
Computational analysis of functional connectivity between areas of primate cerebral cortex.
Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):111-26. doi: 10.1098/rstb.2000.0552.
9
Choice of multivariate autoregressive model order affecting real network functional connectivity estimate.
Clin Neurophysiol. 2009 Feb;120(2):436-48. doi: 10.1016/j.clinph.2008.11.011. Epub 2008 Dec 23.
10
Simulation of robustness against lesions of cortical networks.
Eur J Neurosci. 2007 May;25(10):3185-92. doi: 10.1111/j.1460-9568.2007.05574.x.

引用本文的文献

1
Signal Propagation via Open-Loop Intrathalamic Architectures: A Computational Model.
eNeuro. 2020 Feb 25;7(1). doi: 10.1523/ENEURO.0441-19.2020. Print 2020 Jan/Feb.
2
Discovering the Computational Relevance of Brain Network Organization.
Trends Cogn Sci. 2020 Jan;24(1):25-38. doi: 10.1016/j.tics.2019.10.005. Epub 2019 Nov 11.
3
Biological Characteristics of Connection-Wise Resting-State Functional Connectivity Strength.
Cereb Cortex. 2019 Dec 17;29(11):4646-4653. doi: 10.1093/cercor/bhy342.
5
A Graph Algorithmic Approach to Separate Direct from Indirect Neural Interactions.
PLoS One. 2015 Oct 19;10(10):e0140530. doi: 10.1371/journal.pone.0140530. eCollection 2015.
6
Analysis of epileptic seizures with complex network.
Comput Math Methods Med. 2014;2014:283146. doi: 10.1155/2014/283146. Epub 2014 Jul 23.
7
Speed of perceptual grouping in acquired brain injury.
Exp Brain Res. 2014 Sep;232(9):2899-905. doi: 10.1007/s00221-014-3970-5. Epub 2014 May 13.
9
Functional connectivity in islets of Langerhans from mouse pancreas tissue slices.
PLoS Comput Biol. 2013;9(2):e1002923. doi: 10.1371/journal.pcbi.1002923. Epub 2013 Feb 28.
10
Spreading dynamics on spatially constrained complex brain networks.
J R Soc Interface. 2013 Feb 13;10(81):20130016. doi: 10.1098/rsif.2013.0016. Print 2013 Apr 6.

本文引用的文献

1
Limitations of method of strychnine neuronography.
J Neurophysiol. 1951 Jan;14(1):73-9. doi: 10.1152/jn.1951.14.1.73.
2
Neuronographic analysis of medial and basal cerebral cortex. I. Cat.
J Neurophysiol. 1953 May;16(3):312-23. doi: 10.1152/jn.1953.16.3.312.
3
Collective dynamics of 'small-world' networks.
Nature. 1998 Jun 4;393(6684):440-2. doi: 10.1038/30918.
4
6
Useless or helpful? The "limbic system" concept.
Rev Neurosci. 1997 Apr-Jun;8(2):139-45. doi: 10.1515/revneuro.1997.8.2.139.
7
AWD 140-190: a new anticonvulsant with a very good margin of safety.
Epilepsy Res. 1997 Jul;28(1):17-28. doi: 10.1016/s0920-1211(97)00023-5.
8
A metabolic mapping study of orientation discrimination and detection tasks in the cat.
Eur J Neurosci. 1997 Jun;9(6):1314-28. doi: 10.1111/j.1460-9568.1997.tb01486.x.
10
Indeterminate organization of the visual system.
Science. 1996 Feb 9;271(5250):776-7. doi: 10.1126/science.271.5250.776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验