一种用于区分直接与间接神经相互作用的图算法方法。

A Graph Algorithmic Approach to Separate Direct from Indirect Neural Interactions.

作者信息

Wollstadt Patricia, Meyer Ulrich, Wibral Michael

机构信息

MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.

Institute for Computer Science, Goethe University, Frankfurt/Main, Germany.

出版信息

PLoS One. 2015 Oct 19;10(10):e0140530. doi: 10.1371/journal.pone.0140530. eCollection 2015.

Abstract

Network graphs have become a popular tool to represent complex systems composed of many interacting subunits; especially in neuroscience, network graphs are increasingly used to represent and analyze functional interactions between multiple neural sources. Interactions are often reconstructed using pairwise bivariate analyses, overlooking the multivariate nature of interactions: it is neglected that investigating the effect of one source on a target necessitates to take all other sources as potential nuisance variables into account; also combinations of sources may act jointly on a given target. Bivariate analyses produce networks that may contain spurious interactions, which reduce the interpretability of the network and its graph metrics. A truly multivariate reconstruction, however, is computationally intractable because of the combinatorial explosion in the number of potential interactions. Thus, we have to resort to approximative methods to handle the intractability of multivariate interaction reconstruction, and thereby enable the use of networks in neuroscience. Here, we suggest such an approximative approach in the form of an algorithm that extends fast bivariate interaction reconstruction by identifying potentially spurious interactions post-hoc: the algorithm uses interaction delays reconstructed for directed bivariate interactions to tag potentially spurious edges on the basis of their timing signatures in the context of the surrounding network. Such tagged interactions may then be pruned, which produces a statistically conservative network approximation that is guaranteed to contain non-spurious interactions only. We describe the algorithm and present a reference implementation in MATLAB to test the algorithm's performance on simulated networks as well as networks derived from magnetoencephalographic data. We discuss the algorithm in relation to other approximative multivariate methods and highlight suitable application scenarios. Our approach is a tractable and data-efficient way of reconstructing approximative networks of multivariate interactions. It is preferable if available data are limited or if fully multivariate approaches are computationally infeasible.

摘要

网络图已成为表示由许多相互作用的子单元组成的复杂系统的常用工具;特别是在神经科学领域,网络图越来越多地用于表示和分析多个神经源之间的功能相互作用。相互作用通常使用成对双变量分析进行重建,而忽略了相互作用的多变量性质:人们忽视了研究一个源对目标的影响需要将所有其他源视为潜在的干扰变量;源的组合也可能共同作用于给定目标。双变量分析产生的网络可能包含虚假相互作用,这会降低网络及其图形指标的可解释性。然而,由于潜在相互作用数量的组合爆炸,真正的多变量重建在计算上是难以处理的。因此,我们必须采用近似方法来处理多变量相互作用重建的难处理性,从而能够在神经科学中使用网络。在这里,我们提出了一种近似方法,形式为一种算法,该算法通过事后识别潜在的虚假相互作用来扩展快速双变量相互作用重建:该算法使用为有向双变量相互作用重建的相互作用延迟,根据其在周围网络背景下的时间特征来标记潜在的虚假边。然后可以修剪这些标记的相互作用,从而产生一个统计上保守的网络近似,保证只包含非虚假相互作用。我们描述了该算法,并在MATLAB中给出了一个参考实现,以测试该算法在模拟网络以及从脑磁图数据导出的网络上的性能。我们将该算法与其他近似多变量方法进行了讨论,并突出了合适的应用场景。我们的方法是一种重建多变量相互作用近似网络的易于处理且数据高效的方式。如果可用数据有限或完全多变量方法在计算上不可行,那么这种方法是更可取的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9414/4610700/0a5ed4eb9414/pone.0140530.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索