心理生理学中的混合效应模型。
Mixed-effects models in psychophysiology.
作者信息
Bagiella E, Sloan R P, Heitjan D F
机构信息
Division of Biostatistics, School of Public Health, Columbia University, New York, New York, USA.
出版信息
Psychophysiology. 2000 Jan;37(1):13-20.
The current methodological policy in Psychophysiology stipulates that repeated-measures designs be analyzed using either multivariate analysis of variance (ANOVA) or repeated-measures ANOVA with the Greenhouse-Geisser or Huynh-Feldt correction. Both techniques lead to appropriate type I error probabilities under general assumptions about the variance-covariance matrix of the data. This report introduces mixed-effects models as an alternative procedure for the analysis of repeated-measures data in Psychophysiology. Mixed-effects models have many advantages over the traditional methods: They handle missing data more effectively and are more efficient, parsimonious, and flexible. We described mixed-effects modeling and illustrated its applicability with a simple example.
当前心理生理学的方法学政策规定,重复测量设计应使用多变量方差分析(ANOVA)或采用格林豪斯-盖斯尔(Greenhouse-Geisser)或胡因-费尔德特(Huynh-Feldt)校正的重复测量方差分析进行分析。在关于数据方差协方差矩阵的一般假设下,这两种技术都能得出合适的I型错误概率。本报告引入混合效应模型,作为心理生理学中重复测量数据分析的一种替代方法。混合效应模型相对于传统方法有许多优点:它们能更有效地处理缺失数据,并且更高效、简约和灵活。我们描述了混合效应建模,并通过一个简单示例说明了其适用性。