告别方差分析:重复测量数据分析的进展及其在《普通精神病学档案》发表论文中的体现。
Move over ANOVA: progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry.
作者信息
Gueorguieva Ralitza, Krystal John H
机构信息
Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, USA.
出版信息
Arch Gen Psychiatry. 2004 Mar;61(3):310-7. doi: 10.1001/archpsyc.61.3.310.
BACKGROUND
The analysis of repeated-measures data presents challenges to investigators and is a topic for ongoing discussion in the Archives of General Psychiatry. Traditional methods of statistical analysis (end-point analysis and univariate and multivariate repeated-measures analysis of variance [rANOVA and rMANOVA, respectively]) have known disadvantages. More sophisticated mixed-effects models provide flexibility, and recently developed software makes them available to researchers.
OBJECTIVES
To review methods for repeated-measures analysis and discuss advantages and potential misuses of mixed-effects models. Also, to assess the extent of the shift from traditional to mixed-effects approaches in published reports in the Archives of General Psychiatry.
DATA SOURCES
The Archives of General Psychiatry from 1989 through 2001, and the Department of Veterans Affairs Cooperative Study 425.
STUDY SELECTION
Studies with a repeated-measures design, at least 2 groups, and a continuous response variable.
DATA EXTRACTION
The first author ranked the studies according to the most advanced statistical method used in the following order: mixed-effects model, rMANOVA, rANOVA, and end-point analysis.
DATA SYNTHESIS
The use of mixed-effects models has substantially increased during the last 10 years. In 2001, 30% of clinical trials reported in the Archives of General Psychiatry used mixed-effects analysis.
CONCLUSIONS
Repeated-measures ANOVAs continue to be used widely for the analysis of repeated-measures data, despite risks to interpretation. Mixed-effects models use all available data, can properly account for correlation between repeated measurements on the same subject, have greater flexibility to model time effects, and can handle missing data more appropriately. Their flexibility makes them the preferred choice for the analysis of repeated-measures data.
背景
重复测量数据的分析给研究者带来了挑战,并且是《普通精神病学档案》中持续讨论的一个话题。传统的统计分析方法(终点分析以及单变量和多变量重复测量方差分析[rANOVA和rMANOVA,分别])存在已知的缺点。更复杂的混合效应模型具有灵活性,并且最近开发的软件使研究者能够使用这些模型。
目的
回顾重复测量分析的方法,并讨论混合效应模型的优点和潜在的误用情况。此外,评估《普通精神病学档案》发表报告中从传统方法向混合效应方法转变的程度。
数据来源
1989年至2001年的《普通精神病学档案》,以及退伍军人事务部合作研究425。
研究选择
具有重复测量设计、至少两组以及连续反应变量的研究。
数据提取
第一作者按照所使用的最先进统计方法对研究进行排序,顺序如下:混合效应模型、rMANOVA、rANOVA和终点分析。
数据综合
在过去10年中,混合效应模型的使用大幅增加。2001年,《普通精神病学档案》报道的临床试验中有30%使用了混合效应分析。
结论
尽管存在解释风险,但重复测量方差分析仍继续广泛用于重复测量数据的分析。混合效应模型使用所有可用数据,能够恰当地考虑同一受试者重复测量之间的相关性,在对时间效应建模方面具有更大的灵活性,并且能够更恰当地处理缺失数据。它们的灵活性使其成为重复测量数据分析的首选方法。