使用具有多个缺失数据点的数据集对一般线性混合模型和重复测量方差分析进行比较。
A comparison of the general linear mixed model and repeated measures ANOVA using a dataset with multiple missing data points.
作者信息
Krueger Charlene, Tian Lili
机构信息
University of Florida College of Nursing, Gainesville 32610-0187, USA.
出版信息
Biol Res Nurs. 2004 Oct;6(2):151-7. doi: 10.1177/1099800404267682.
Longitudinal methods are the methods of choice for researchers who view their phenomena of interest as dynamic. Although statistical methods have remained largely fixed in a linear view of biology and behavior, more recent methods, such as the general linear mixed model (mixed model), can be used to analyze dynamic phenomena that are often of interest to nurses. Two strengths of the mixed model are (1) the ability to accommodate missing data points often encountered in longitudinal datasets and (2) the ability to model nonlinear, individual characteristics. The purpose of this article is to demonstrate the advantages of using the mixed model for analyzing nonlinear, longitudinal datasets with multiple missing data points by comparing the mixed model to the widely used repeated measures ANOVA using an experimental set of data. The decision-making steps in analyzing the data using both the mixed model and the repeated measures ANOVA are described.
纵向研究方法是那些将其感兴趣的现象视为动态现象的研究人员的首选方法。尽管统计方法在很大程度上仍停留在对生物学和行为的线性观点上,但最近出现的一些方法,如广义线性混合模型(混合模型),可用于分析护士们通常感兴趣的动态现象。混合模型的两个优点是:(1)能够处理纵向数据集中经常出现的缺失数据点;(2)能够对非线性的个体特征进行建模。本文的目的是通过将混合模型与广泛使用的重复测量方差分析(ANOVA)进行比较,使用一组实验数据来证明使用混合模型分析具有多个缺失数据点的非线性纵向数据集的优势。文中还描述了使用混合模型和重复测量方差分析来分析数据时的决策步骤。