Suppr超能文献

通过互信息最大化对多模态图像配准的多分辨率优化策略进行比较评估。

Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information.

作者信息

Maes F, Vandermeulen D, Suetens P

机构信息

Katholieke Universiteit Leuven, Department of Electrical Engineering (ESAT-PSI), Heverlee, Belgium.

出版信息

Med Image Anal. 1999 Dec;3(4):373-86. doi: 10.1016/s1361-8415(99)80030-9.

Abstract

Maximization of mutual information of voxel intensities has been demonstrated to be a very powerful criterion for three-dimensional medical image registration, allowing robust and accurate fully automated affine registration of multimodal images in a variety of applications, without the need for segmentation or other preprocessing of the images. In this paper, we investigate the performance of various optimization methods and multiresolution strategies for maximization of mutual information, aiming at increasing registration speed when matching large high-resolution images. We show that mutual information is a continuous function of the affine registration parameters when appropriate interpolation is used and we derive analytic expressions of its derivatives that allow numerically exact evaluation of its gradient. Various multiresolution gradient- and non-gradient-based optimization strategies, such as Powell, simplex, steepest-descent, conjugate-gradient, quasi-Newton and Levenberg-Marquardt methods, are evaluated for registration of computed tomography (CT) and magnetic resonance images of the brain. Speed-ups of a factor of 3 on average compared to Powell's method at full resolution are achieved with similar precision and without a loss of robustness with the simplex, conjugate-gradient and Levenberg-Marquardt method using a two-level multiresolution scheme. Large data sets such as 256(2) x 128 MR and 512(2) x 48 CT images can be registered with subvoxel precision in <5 min CPU time on current workstations.

摘要

体素强度互信息最大化已被证明是三维医学图像配准的一个非常强大的准则,它允许在各种应用中对多模态图像进行稳健且准确的全自动仿射配准,而无需对图像进行分割或其他预处理。在本文中,我们研究了用于互信息最大化的各种优化方法和多分辨率策略的性能,旨在提高匹配大型高分辨率图像时的配准速度。我们表明,当使用适当的插值时,互信息是仿射配准参数的连续函数,并且我们推导了其导数的解析表达式,从而可以对其梯度进行数值精确评估。针对脑部计算机断层扫描(CT)和磁共振图像的配准,评估了各种基于多分辨率梯度和非梯度的优化策略,如鲍威尔法、单纯形法、最速下降法、共轭梯度法、拟牛顿法和列文伯格 - 马夸尔特法。使用两级多分辨率方案,与全分辨率下的鲍威尔法相比,单纯形法、共轭梯度法和列文伯格 - 马夸尔特法平均速度提高了3倍,精度相似且不失稳健性。在当前工作站上,如256(2)×128的磁共振图像和512(2)×48的CT图像等大数据集可以在不到5分钟的CPU时间内以亚体素精度进行配准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验