Suppr超能文献

地理模式:如何识别它们以及原因。

Geographic patterns: how to identify them and why.

作者信息

Barbujani G

机构信息

Dipartimento di Biologia, Università di Ferrara, Italy.

出版信息

Hum Biol. 2000 Feb;72(1):133-53.

Abstract

Geographic patterns of genetic diversity allow us to make inferences about population histories and the evolution of inherited disease. The statistical methods describing genetic variation in space, such as estimation of genetic variances, mapping of allele frequencies, and principal components analysis, have opened up the possibility to reconstruct demographic processes whose effects have been tested by a variety of approaches, including spatial autocorrelation, cladistic analyses, and simulations. These studies have significantly contributed to our understanding of human genetic variation; however, the molecular data that have accumulated since the mid-1980s have also created new complications. Reasons include the generally limited sample sizes, but, more generally, it is the nature of molecular variation itself that makes it necessary to develop and apply specific models and methods for the treatment of DNA data. The foreseeable diffusion of laboratory techniques for the rapid typing of many DNA markers will force us to change our approach to the study of human variation anyway, moving from the gene level toward the genome level. Because extensive variation among loci is the rule rather than the exception, an important practical tip is to be skeptical of inferences based on single-locus diversity.

摘要

遗传多样性的地理模式使我们能够推断种群历史以及遗传病的演变。描述空间遗传变异的统计方法,如遗传方差估计、等位基因频率映射和主成分分析,为重建人口过程开辟了可能性,这些过程的影响已通过多种方法进行了检验,包括空间自相关、分支分析和模拟。这些研究极大地促进了我们对人类遗传变异的理解;然而,自20世纪80年代中期以来积累的分子数据也带来了新的复杂性。原因包括样本量通常有限,但更普遍的是,分子变异本身的性质使得有必要开发和应用特定的模型和方法来处理DNA数据。无论如何,许多DNA标记快速分型实验室技术的可预见传播将迫使我们改变人类变异研究的方法,从基因水平转向基因组水平。由于基因座间广泛的变异是常态而非例外,一个重要的实用提示是对基于单基因座多样性的推断持怀疑态度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验