Suppr超能文献

在亲缘结构迁移情况下,使用空间自相关分析检测临床选择和平衡选择。

Detecting clinical and balanced selection using spatial autocorrelation analysis under kin-structured migration.

作者信息

Fix A G

机构信息

Department of Anthropology, University of California at Riverside 92521-0418.

出版信息

Am J Phys Anthropol. 1994 Dec;95(4):385-97. doi: 10.1002/ajpa.1330950403.

Abstract

Recently spatial autocorrelation has been employed to infer microevolutionary processes from patterns of genetic variation. In theory, different processes should show characteristic signature correlograms; e.g., clinal selection should produce correlograms decreasing from positive to negative autocorrelation, whereas uniform balanced selection should lead to no spatial autocorrelation. The ability of a statistical method such as spatial autocorrelation analysis to distinguish between these selective regimes or even to detect departures from neutrality is dependent on the strength of the evolutionary force and the population structure. Weak selection or migration will not be apparent against the expected background of stochastic noise. Moreover, the population structure may generate sufficient stochastic variation such that even strong evolutionary forces may fail to be detected. This study uses computer simulation to examine the effects of kin-structured migration and three different selective regimes on the shape of spatial correlograms to assess the ability of this technique to detect different microevolutionary processes. Genetic variation among 8 loci is simulated in a linear set of 25 artificial populations. Kin-structured stepping-stone migration among adjacent populations is modeled; directional, balanced, and clinal selection, as well as neutral loci are considered. These experiments show that strong selection produces correlograms of the predicted shape. However, with an anthropologically reasonable population structure, considerable stochastic variation among correlograms for different alleles may still exist. This suggests the need for caution in inferring genetic process from spatial patterns.

摘要

最近,空间自相关已被用于从遗传变异模式推断微观进化过程。理论上,不同的过程应该显示出特征性的相关图;例如,渐变选择应该产生从正自相关到负自相关递减的相关图,而均匀平衡选择应该导致没有空间自相关。像空间自相关分析这样的统计方法区分这些选择机制甚至检测偏离中性的能力取决于进化力的强度和种群结构。在随机噪声的预期背景下,弱选择或迁移不会明显。此外,种群结构可能产生足够的随机变异,以至于即使是强大的进化力也可能无法被检测到。本研究使用计算机模拟来检验亲属结构迁移和三种不同选择机制对空间相关图形状的影响,以评估该技术检测不同微观进化过程的能力。在由25个人工种群组成的线性集合中模拟了8个位点的遗传变异。对相邻种群之间亲属结构的踏脚石迁移进行了建模;考虑了定向、平衡和渐变选择以及中性位点。这些实验表明,强选择产生了预测形状的相关图。然而,在符合人类学常理的种群结构下,不同等位基因的相关图之间可能仍然存在相当大的随机变异。这表明在从空间模式推断遗传过程时需要谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验