Jarman K H, Cebula S T, Saenz A J, Petersen C E, Valentine N B, Kingsley M T, Wahl K L
Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Anal Chem. 2000 Mar 15;72(6):1217-23. doi: 10.1021/ac990832j.
An algorithm for bacterial identification using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is being developed. This mass spectral fingerprint comparison algorithm is fully automated and statistically based, providing objective analysis of samples to be identified. Based on extraction of reference fingerprint ions from test spectra, this approach should lend itself well to real-world applications where samples are likely to be impure. This algorithm is illustrated using a blind study. In the study, MALDI-MS fingerprints for Bacillus atrophaeus ATCC 49337, Bacillus cereus ATCC 14579T, Escherichia coli ATCC 33694, Pantoea agglomerans ATCC 33243, and Pseudomonas putida F1 are collected and form a reference library. The identification of test samples containing one or more reference bacteria, potentially mixed with one species not in the library (Shewanella alga BrY), is performed by comparison to the reference library with a calculated degree of association. Out of 60 samples, no false positives are present, and the correct identification rate is 75%. Missed identifications are largely due to a weak B. cereus signal in the bacterial mixtures. Potential modifications to the algorithm are presented and result in a higher than 90% correct identification rate for the blind study data, suggesting that this approach has the potential for reliable and accurate automated data analysis of MALDI-MS.
一种使用基质辅助激光解吸/电离(MALDI)质谱法进行细菌鉴定的算法正在开发中。这种质谱指纹比较算法是完全自动化且基于统计学的,能对待鉴定样品进行客观分析。基于从测试光谱中提取参考指纹离子,这种方法应非常适用于实际应用中样品可能不纯的情况。通过一项盲法研究对该算法进行了说明。在研究中,收集了萎缩芽孢杆菌ATCC 49337、蜡样芽孢杆菌ATCC 14579T、大肠杆菌ATCC 33694、成团泛菌ATCC 33243和恶臭假单胞菌F1的MALDI-MS指纹,并形成一个参考库。通过与参考库进行比较并计算关联度,对含有一种或多种参考细菌、可能与库中未包含的一种细菌(海藻希瓦氏菌BrY)混合的测试样品进行鉴定。在60个样品中,没有出现假阳性,正确鉴定率为75%。漏检主要是由于细菌混合物中蜡样芽孢杆菌信号较弱。文中提出了对该算法的潜在改进,对于盲法研究数据,改进后的正确鉴定率高于90%,这表明这种方法有潜力对MALDI-MS进行可靠且准确的自动化数据分析。