Suppr超能文献

利用植物cDNA文库对细菌二氨基庚二酸营养缺陷型进行功能拯救,筛选出编码反馈不敏感型二氢吡啶二羧酸合酶的突变克隆。

Functional rescue of a bacterial dapA auxotroph with a plant cDNA library selects for mutant clones encoding a feedback-insensitive dihydrodipicolinate synthase.

作者信息

Vauterin M, Frankard V, Jacobs M

机构信息

Laboratorium voor Plantengenetica, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, Sint Genesius Rode B-1640, Belgium.

出版信息

Plant J. 2000 Feb;21(3):239-48. doi: 10.1046/j.1365-313x.2000.00668.x.

Abstract

Dihydrodipicolinate synthase (DHDPS; EC4.2.1.52) catalyses the first reaction of lysine biosynthesis in plants and bacteria. Plant DHDPS enzymes are strongly inhibited by lysine (I0.5 approximately 10 microM), whereas the bacterial enzymes are less (50-fold) or insensitive to lysine inhibition. We found that plant dhdps sequences expressing lysine-sensitive DHDPS enzymes are unable to complement a bacterial auxotroph, although a functional plant DHDPS enzyme is formed. As a consequence of this, plant dhdps cDNA clones which have been isolated through functional complementation using the DHDPS-deficient Escherichia coli strain encode mutated DHDPS enzymes impaired in lysine inhibition. The experiments outlined in this article emphasize that heterologous complementation can select for mutant clones when altered protein properties are requisite for functional rescue. In addition, the mutants rescued by heterologous complementation revealed a new critical amino acid substitution which renders lysine insensitivity to the plant DHDPS enzyme. An interpretation is given for the impaired inhibition mechanism of the mutant DHDPS enzyme by integrating the identified amino acid substitution in the DHDPS protein structure.

摘要

二氢吡啶二羧酸合酶(DHDPS;EC4.2.1.52)催化植物和细菌中赖氨酸生物合成的第一步反应。植物DHDPS酶受到赖氨酸的强烈抑制(I0.5约为10微摩尔),而细菌酶对赖氨酸抑制的敏感性较低(低50倍)或不敏感。我们发现,表达对赖氨酸敏感的DHDPS酶的植物dhdps序列无法互补细菌营养缺陷型,尽管形成了功能性的植物DHDPS酶。因此,通过使用缺乏DHDPS的大肠杆菌菌株进行功能互补而分离出的植物dhdps cDNA克隆编码在赖氨酸抑制方面受损的突变DHDPS酶。本文概述的实验强调,当改变的蛋白质特性是功能拯救所必需时,异源互补可以选择突变克隆。此外,通过异源互补拯救的突变体揭示了一个新的关键氨基酸取代,该取代使植物DHDPS酶对赖氨酸不敏感。通过将鉴定出的氨基酸取代整合到DHDPS蛋白质结构中,对突变DHDPS酶受损的抑制机制进行了解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验