Suppr超能文献

Ger蛋白在枯草芽孢杆菌孢子萌发的营养和非营养触发中的作用。

Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis.

作者信息

Paidhungat M, Setlow P

机构信息

Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, USA.

出版信息

J Bacteriol. 2000 May;182(9):2513-9. doi: 10.1128/JB.182.9.2513-2519.2000.

Abstract

Dormant Bacillus subtilis spores germinate in the presence of particular nutrients called germinants. The spores are thought to recognize germinants through receptor proteins encoded by the gerA family of operons, which includes gerA, gerB, and gerK. We sought to substantiate this putative function of the GerA family proteins by characterizing spore germination in a mutant strain that contained deletions at all known gerA-like loci. As expected, the mutant spores germinated very poorly in a variety of rich media. In contrast, they germinated like wild-type spores in a chemical germinant, a 1-1 chelate of Ca(2+) and dipicolinic acid (DPA). These observations showed that proteins encoded by gerA family members are required for nutrient-induced germination but not for chemical-triggered germination, supporting the hypothesis that the GerA family encodes receptors for nutrient germinants. Further characterization of Ca(2+)-DPA-induced germination showed that the effect of Ca(2+)-DPA on spore germination was saturated at 60 mM and had a K(m) of 30 mM. We also found that decoating spores abolished their ability to germinate in Ca(2+)-DPA but not in nutrient germinants, indicating that Ca(2+)-DPA and nutrient germinants probably act through parallel arms of the germination pathway.

摘要

休眠的枯草芽孢杆菌孢子在存在称为萌发剂的特定营养物质时会萌发。人们认为孢子通过由gerA操纵子家族编码的受体蛋白来识别萌发剂,该家族包括gerA、gerB和gerK。我们试图通过对一个在所有已知的类gerA位点都有缺失的突变菌株中的孢子萌发进行表征,来证实GerA家族蛋白的这种假定功能。正如预期的那样,突变孢子在各种丰富培养基中的萌发情况非常差。相比之下,它们在化学萌发剂(一种Ca²⁺与吡啶二羧酸(DPA)的1∶1螯合物)中能像野生型孢子一样萌发。这些观察结果表明,gerA家族成员编码的蛋白质是营养物诱导萌发所必需的,但不是化学触发萌发所必需的,这支持了GerA家族编码营养物萌发剂受体的假说。对Ca²⁺-DPA诱导萌发的进一步表征表明,Ca²⁺-DPA对孢子萌发的影响在60 mM时达到饱和,其米氏常数(Kₘ)为30 mM。我们还发现,去除孢子的包被会消除它们在Ca²⁺-DPA中萌发的能力,但不会影响在营养物萌发剂中的萌发能力,这表明Ca²⁺-DPA和营养物萌发剂可能通过萌发途径的平行分支起作用。

相似文献

1
Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis.
J Bacteriol. 2000 May;182(9):2513-9. doi: 10.1128/JB.182.9.2513-2519.2000.
2
Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis.
J Bacteriol. 2003 Apr;185(8):2457-64. doi: 10.1128/JB.185.8.2457-2464.2003.
6
Memory of Germinant Stimuli in Bacterial Spores.
mBio. 2015 Nov 24;6(6):e01859-15. doi: 10.1128/mBio.01859-15.
7
The GerW protein is not involved in the germination of spores of Bacillus species.
PLoS One. 2015 Mar 19;10(3):e0119125. doi: 10.1371/journal.pone.0119125. eCollection 2015.
8
Effects of a gerF (lgt) mutation on the germination of spores of Bacillus subtilis.
J Bacteriol. 2004 May;186(10):2984-91. doi: 10.1128/JB.186.10.2984-2991.2004.
9
Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination.
J Bacteriol. 2015 Mar;197(6):1095-103. doi: 10.1128/JB.02490-14. Epub 2015 Jan 12.
10
Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure.
Appl Environ Microbiol. 2005 Oct;71(10):5879-87. doi: 10.1128/AEM.71.10.5879-5887.2005.

引用本文的文献

1
Pathways for accelerated bacterial spore killing with ohmic heating.
NPJ Sci Food. 2025 Aug 7;9(1):167. doi: 10.1038/s41538-025-00537-1.
2
Sporulation at reduced water activity impairs germination kinetics of spores.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0067725. doi: 10.1128/aem.00677-25. Epub 2025 Jun 10.
4
Construction of a Bacillus subtilis-based expression system for Eimeria acervulina profilin.
Poult Sci. 2025 Apr 5;104(6):105112. doi: 10.1016/j.psj.2025.105112.
5
Effects of Aqua-Glycerol Uptake Facilitator Protein GlpF on Spore Germination of .
Foods. 2025 Feb 22;14(5):750. doi: 10.3390/foods14050750.
6
Newly identified SpoVAF/FigP complex: the role in spore germination at moderate high pressure and influencing factors.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0204724. doi: 10.1128/aem.02047-24. Epub 2025 Jan 21.
7
Monitoring of spore-forming dynamics through flow cytometry.
Front Microbiol. 2024 Oct 29;15:1450913. doi: 10.3389/fmicb.2024.1450913. eCollection 2024.
9
Bacterium secretes chemical inhibitor that sensitizes competitor to bacteriophage infection.
bioRxiv. 2024 Jan 31:2024.01.31.578241. doi: 10.1101/2024.01.31.578241.
10
SpoVAF and FigP assemble into oligomeric ion channels that enhance spore germination.
Genes Dev. 2024 Feb 13;38(1-2):31-45. doi: 10.1101/gad.351353.123.

本文引用的文献

1
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
2
Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis.
Mol Microbiol. 1999 Jul;33(2):407-14. doi: 10.1046/j.1365-2958.1999.01485.x.
4
An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125.
Extremophiles. 1999 Jan;3(1):21-8. doi: 10.1007/s007920050095.
5
Bacillus subtilis spore coat.
Microbiol Mol Biol Rev. 1999 Mar;63(1):1-20. doi: 10.1128/MMBR.63.1.1-20.1999.
6
Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants.
J Bacteriol. 1998 Dec;180(24):6729-35. doi: 10.1128/JB.180.24.6729-6735.1998.
7
The complete genome sequence of the gram-positive bacterium Bacillus subtilis.
Nature. 1997 Nov 20;390(6657):249-56. doi: 10.1038/36786.
8
Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.
Microbiol Rev. 1993 Mar;57(1):1-33. doi: 10.1128/mr.57.1.1-33.1993.
10
The genetic analysis of bacterial spore germination.
Soc Appl Bacteriol Symp Ser. 1994;23:9S-16S.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验