Suppr超能文献

类片球菌素细菌素中的C末端二硫键使细菌素活性降低对温度的依赖性,并且是抗菌谱的主要决定因素。

A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum.

作者信息

Fimland G, Johnsen L, Axelsson L, Brurberg M B, Nes I F, Eijsink V G, Nissen-Meyer J

机构信息

Department of Biochemistry, University of Oslo, Oslo, Norway.

出版信息

J Bacteriol. 2000 May;182(9):2643-8. doi: 10.1128/JB.182.9.2643-2648.2000.

Abstract

Several lactic acid bacteria produce so-called pediocin-like bacteriocins that share sequence characteristics, but differ in activity and target cell specificity. The significance of a C-terminal disulfide bridge present in only a few of these bacteriocins was studied by site-directed mutagenesis of pediocin PA-1 (which naturally contains the bridge) and sakacin P (which lacks the bridge). Introduction of the C-terminal bridge into sakacin P broadened the target cell specificity of this bacteriocin, as illustrated by the fact that the mutants were 10 to 20 times more potent than the wild-type toward certain indicator strains, whereas the potency toward other indicator strains remained essentially unchanged. Like pediocin PA-1, disulfide-containing sakacin P mutants had the same potency at 20 and 37 degrees C, whereas wild-type sakacin P was approximately 10 times less potent at 37 degrees C than at 20 degrees C. Reciprocal effects on target cell specificity and the temperature dependence of potency were observed upon studying the effect of removing the C-terminal disulfide bridge from pediocin PA-1 by Cys-->Ser mutations. These results clearly show that a C-terminal disulfide bridge in pediocin-like bacteriocins contributes to widening of the antimicrobial spectrum as well as to higher potency at elevated temperatures. Interestingly, the differences between sakacin P and pediocin PA-1 in terms of the temperature dependency of their activities correlated well with the optimal temperatures for bacteriocin production and growth of the bacteriocin-producing strain.

摘要

几种乳酸菌会产生所谓的类片球菌素细菌素,它们具有共同的序列特征,但活性和靶细胞特异性有所不同。通过对片球菌素PA-1(天然含有该二硫键)和清酒乳杆菌素P(缺乏该二硫键)进行定点诱变,研究了仅在少数这些细菌素中存在的C端二硫键的意义。将C端二硫键引入清酒乳杆菌素P中拓宽了该细菌素的靶细胞特异性,这一事实表明,突变体对某些指示菌株的效力比野生型高10至20倍,而对其他指示菌株的效力基本保持不变。与片球菌素PA-1一样,含二硫键的清酒乳杆菌素P突变体在20℃和37℃时具有相同的效力,而野生型清酒乳杆菌素P在37℃时的效力比在20℃时约低10倍。在通过半胱氨酸突变为丝氨酸去除片球菌素PA-1的C端二硫键的研究中,观察到了对靶细胞特异性和效力温度依赖性的相互影响。这些结果清楚地表明,类片球菌素细菌素中的C端二硫键有助于扩大抗菌谱以及在升高温度时提高效力。有趣的是,清酒乳杆菌素P和片球菌素PA-1在活性温度依赖性方面的差异与细菌素产生菌株的细菌素产生和生长的最佳温度密切相关。

相似文献

3
The Pediocin PA-1 Accessory Protein Ensures Correct Disulfide Bond Formation in the Antimicrobial Peptide Pediocin PA-1.
Biochemistry. 2015 May 19;54(19):2967-74. doi: 10.1021/acs.biochem.5b00164. Epub 2015 May 11.
5
Comparative studies of immunity proteins of pediocin-like bacteriocins.
Microbiology (Reading). 2002 Nov;148(Pt 11):3661-3670. doi: 10.1099/00221287-148-11-3661.
7
Mutational analysis of positively charged residues in the N-terminal region of the class IIa bacteriocin pediocin PA-1.
Lett Appl Microbiol. 2014 Apr;58(4):356-61. doi: 10.1111/lam.12197. Epub 2013 Dec 19.
8
Engineering increased stability in the antimicrobial peptide pediocin PA-1.
Appl Environ Microbiol. 2000 Nov;66(11):4798-802. doi: 10.1128/AEM.66.11.4798-4802.2000.
9
Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins.
Appl Environ Microbiol. 2007 Aug;73(16):5292-9. doi: 10.1128/AEM.00558-07. Epub 2007 Jun 29.

引用本文的文献

1
Leveraging strain competition to address antimicrobial resistance with microbiota therapies.
Gut Microbes. 2025 Dec;17(1):2488046. doi: 10.1080/19490976.2025.2488046. Epub 2025 Apr 7.
2
Discovering Potential Bacteriocins Against Pseudomonas fragi: a Subtractive Proteomics and Molecular Dynamic Simulation Study for Food Preservation.
Appl Biochem Biotechnol. 2024 May;196(5):2851-2868. doi: 10.1007/s12010-023-04509-7. Epub 2023 Apr 27.
3
Bacteriocin: A natural approach for food safety and food security.
Front Bioeng Biotechnol. 2022 Oct 24;10:1005918. doi: 10.3389/fbioe.2022.1005918. eCollection 2022.
4
Genome-assisted Identification, Purification, and Characterization of Bacteriocins.
Bio Protoc. 2022 Jul 20;12(14). doi: 10.21769/BioProtoc.4477.
5
Structural Basis of Pore Formation in the Mannose Phosphotransferase System by Pediocin PA-1.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0199221. doi: 10.1128/AEM.01992-21. Epub 2021 Dec 1.
6
spp. as a Producer and Target of Bacteriocins: A Double-Edged Sword in the Antimicrobial Resistance Crisis Context.
Antibiotics (Basel). 2021 Oct 7;10(10):1215. doi: 10.3390/antibiotics10101215.
7
Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry.
Front Bioeng Biotechnol. 2021 May 12;9:612285. doi: 10.3389/fbioe.2021.612285. eCollection 2021.
10
Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications.
World J Microbiol Biotechnol. 2017 Jun;33(6):124. doi: 10.1007/s11274-017-2291-9. Epub 2017 May 22.

本文引用的文献

1
Influence of Growth Conditions on the Production of a Bacteriocin, Pediocin AcH, by Pediococcus acidilactici H.
Appl Environ Microbiol. 1991 Apr;57(4):1265-7. doi: 10.1128/aem.57.4.1265-1267.1991.
5
A system for heterologous expression of bacteriocins in Lactobacillus sake.
FEMS Microbiol Lett. 1998 Nov 1;168(1):137-43. doi: 10.1111/j.1574-6968.1998.tb13266.x.
8
Comparative studies of class IIa bacteriocins of lactic acid bacteria.
Appl Environ Microbiol. 1998 Sep;64(9):3275-81. doi: 10.1128/AEM.64.9.3275-3281.1998.
9
Sequence and structural relationships of leucocins A-, B- and C-TA33a from Leuconostoc mesenteroides TA33a.
Microbiology (Reading). 1998 May;144 ( Pt 5):1343-1348. doi: 10.1099/00221287-144-5-1343.
10
Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity.
Appl Environ Microbiol. 1998 Jun;64(6):1997-2005. doi: 10.1128/AEM.64.6.1997-2005.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验