Huber I, Wappl E, Herzog A, Mitterdorfer J, Glossmann H, Langer T, Striessnig J
Institut für Biochemische Pharmakologie, Peter-Mayrstrasse 1, A-6020 Innsbruck, Austria.
Biochem J. 2000 May 1;347 Pt 3(Pt 3):829-36.
Sensitivity to 1,4-dihydropyridines (DHPs) can be transferred from L-type (alpha1C) to non-L-type (alpha1A) Ca(2+) channel alpha1 subunits by the mutation of nine pore-associated non-conserved amino acid residues, yielding mutant alpha1A(DHP). To determine whether the hallmarks of reversible DHP binding to L-type Ca(2+) channels (nanomolar dissociation constants, stereoselectivity and modulation by other chemical classes of Ca(2+) antagonist drugs) were maintained in alpha1A(DHP), we analysed the pharmacological properties of (+)-[(3)H]isradipine-labelled alpha1A(DHP) Ca(2+) channels after heterologous expression. Binding of (+)-isradipine (K(i) 7.4 nM) and the non-benzoxadiazole DHPs nifedipine (K(i) 86 nM), (+/-)-nitrendipine (K(i) 33 nM) and (+/-)-nimodipine (K(i) 67 nM) to alpha1A(DHP) occurred at low nanomolar K(i) values. DHP binding was highly stereoselective [25-fold higher affinity for (+)-isradipine]. As with native channels it was stimulated by (+)-cis-diltiazem, (+)-tetrandrine and mibefradil. This suggested that the three-dimensional architecture of the channel pore was maintained within the non-L-type alpha1A subunit. To predict the three-dimensional arrangement of the DHP-binding residues we exploited the X-ray structure of a recently crystallized bacterial K(+) channel (KcsA) as a template. Our model is based on the assumption that the Ca(2+) channel S5 and S6 segments closely resemble the KcsA transmembrane folding architecture. In the absence of three-dimensional structural data for the alpha1 subunit this is currently the most reasonable approach for modelling this drug-interaction domain. Our model predicts that the previously identified DHP-binding residues form a binding pocket large enough to co-ordinate a single DHP molecule. It also implies that the four homologous Ca(2+) channel repeats are arranged in a clockwise manner.
通过九个与孔相关的非保守氨基酸残基的突变,对1,4 - 二氢吡啶(DHP)的敏感性可从L型(α1C)Ca(2+)通道α1亚基转移至非L型(α1A)Ca(2+)通道α1亚基,从而产生突变体α1A(DHP)。为了确定可逆性DHP与L型Ca(2+)通道结合的特征(纳摩尔解离常数、立体选择性以及其他化学类别的Ca(2+)拮抗剂药物的调节作用)在α1A(DHP)中是否得以保留,我们在异源表达后分析了(+)-[(3)H]异拉地平标记的α1A(DHP) Ca(2+)通道的药理学特性。(+)-异拉地平(K(i) 7.4 nM)以及非苯并恶二唑类DHP硝苯地平(K(i) 86 nM)、(+/-)-尼群地平(K(i) 33 nM)和(+/-)-尼莫地平(K(i) 67 nM)与α1A(DHP)的结合发生在低纳摩尔K(i)值。DHP结合具有高度立体选择性[对(+)-异拉地平的亲和力高25倍]。与天然通道一样,它受到(+)-顺式地尔硫卓、(+)-粉防己碱和米贝拉地尔的刺激。这表明通道孔的三维结构在非L型α1A亚基中得以保留。为了预测DHP结合残基的三维排列,我们利用最近结晶的细菌K(+)通道(KcsA)的X射线结构作为模板。我们的模型基于这样的假设,即Ca(2+)通道的S5和S6片段与KcsA跨膜折叠结构非常相似。在缺乏α1亚基三维结构数据的情况下,这是目前对该药物相互作用结构域进行建模最合理的方法。我们的模型预测,先前确定的DHP结合残基形成了一个足够大的结合口袋,可容纳单个DHP分子。它还意味着四个同源的Ca(2+)通道重复序列以顺时针方式排列。