Suppr超能文献

无需波长比率法估算细胞内钙浓度及缓冲能力

Estimating intracellular calcium concentrations and buffering without wavelength ratioing.

作者信息

Maravall M, Mainen Z F, Sabatini B L, Svoboda K

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA.

出版信息

Biophys J. 2000 May;78(5):2655-67. doi: 10.1016/S0006-3495(00)76809-3.

Abstract

We describe a method for determining intracellular free calcium concentration ([Ca(2+)]) from single-wavelength fluorescence signals. In contrast to previous single-wavelength calibration methods, the proposed method does not require independent estimates of resting [Ca(2+)] but relies on the measurement of fluorescence close to indicator saturation during an experiment. Consequently, it is well suited to [Ca(2+)] indicators for which saturation can be achieved under physiological conditions. In addition, the method requires that the indicators have large dynamic ranges. Popular indicators such as Calcium Green-1 or Fluo-3 fulfill these conditions. As a test of the method, we measured [Ca(2+)] in CA1 pyramidal neurons in rat hippocampal slices using Oregon Green BAPTA-1 and 2-photon laser scanning microscopy (BAPTA: 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid). Resting [Ca(2+)] was 32-59 nM in the proximal apical dendrite. Monitoring action potential-evoked [Ca(2+)] transients as a function of indicator loading yielded estimates of endogenous buffering capacity (44-80) and peak [Ca(2+)] changes at zero added buffer (178-312 nM). In young animals (postnatal days 14-17) our results were comparable to previous estimates obtained by ratiometric methods (, Biophys. J. 70:1069-1081), and no significant differences were seen in older animals (P24-28). We expect our method to be widely applicable to measurements of [Ca(2+)] and [Ca(2+)]-dependent processes in small neuronal compartments, particularly in the many situations that do not permit wavelength ratio imaging.

摘要

我们描述了一种从单波长荧光信号确定细胞内游离钙浓度([Ca(2+)])的方法。与先前的单波长校准方法不同,该方法不需要独立估计静息[Ca(2+)],而是依赖于实验期间接近指示剂饱和时荧光的测量。因此,它非常适合在生理条件下可实现饱和的[Ca(2+)]指示剂。此外,该方法要求指示剂具有较大的动态范围。诸如钙黄绿素-1或Fluo-3等常用指示剂满足这些条件。作为该方法的测试,我们使用俄勒冈绿BAPTA-1和双光子激光扫描显微镜(BAPTA:1,2-双(2-氨基苯氧基)乙烷-N,N,N',N'-四乙酸)测量了大鼠海马切片CA1锥体神经元中的[Ca(2+)]。近端顶端树突中的静息[Ca(2+)]为32 - 59 nM。监测动作电位诱发的[Ca(2+)]瞬变作为指示剂负载的函数,得出内源性缓冲能力(44 - 80)和零添加缓冲液时峰值[Ca(2+)]变化(178 - 312 nM)的估计值。在幼龄动物(出生后第14 - 17天)中,我们的结果与先前通过比率法获得的估计值相当(,《生物物理学杂志》70:1069 - 1081),在老龄动物(P24 - 28)中未观察到显著差异。我们预计我们的方法将广泛适用于测量小神经元区室中的[Ca(2+)]和[Ca(2+)]依赖性过程,特别是在许多不允许波长比率成像的情况下。

相似文献

1
Estimating intracellular calcium concentrations and buffering without wavelength ratioing.
Biophys J. 2000 May;78(5):2655-67. doi: 10.1016/S0006-3495(00)76809-3.
2
Estimating intracellular Ca2+ concentrations and buffering in a dendritic inhibitory hippocampal interneuron.
Neuroscience. 2009 Dec 29;164(4):1701-11. doi: 10.1016/j.neuroscience.2009.09.052. Epub 2009 Sep 25.
3
Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons.
Biophys J. 1996 Feb;70(2):1069-81. doi: 10.1016/S0006-3495(96)79653-4.
4
Analytical calculation of intracellular calcium wave characteristics.
Biophys J. 1997 Jun;72(6):2430-44. doi: 10.1016/S0006-3495(97)78888-X.
7
Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles.
Biophys J. 1999 Mar;76(3):1693-705. doi: 10.1016/S0006-3495(99)77328-5.
9
10
Ca²+ buffering at a drosophila larval synaptic terminal.
Synapse. 2011 Jul;65(7):687-93. doi: 10.1002/syn.20909. Epub 2011 Mar 10.

引用本文的文献

1
Resolving synaptic events using subsynaptically targeted GCaMP8 variants.
bioRxiv. 2025 Jun 19:2025.06.19.660577. doi: 10.1101/2025.06.19.660577.
2
A sensitive soma-localized red fluorescent calcium indicator for in vivo imaging of neuronal populations at single-cell resolution.
PLoS Biol. 2025 Apr 29;23(4):e3003048. doi: 10.1371/journal.pbio.3003048. eCollection 2025 Apr.
3
Spike rate inference from mouse spinal cord calcium imaging data.
J Neurosci. 2025 Mar 24;45(18). doi: 10.1523/JNEUROSCI.1187-24.2025.
6
Spike rate inference from mouse spinal cord calcium imaging data.
bioRxiv. 2025 Jan 11:2024.07.17.603957. doi: 10.1101/2024.07.17.603957.
7
Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons.
Biomolecules. 2024 Dec 18;14(12):1617. doi: 10.3390/biom14121617.
8
Neuronal activity inhibits mitochondrial transport only in synaptically connected segments of the axon.
Front Cell Neurosci. 2024 Dec 4;18:1509283. doi: 10.3389/fncel.2024.1509283. eCollection 2024.
10
Deep-prior ODEs augment fluorescence imaging with chemical sensors.
Nat Commun. 2024 Oct 24;15(1):9172. doi: 10.1038/s41467-024-53232-2.

本文引用的文献

1
Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage.
Biophys J. 1999 Oct;77(4):2226-36. doi: 10.1016/S0006-3495(99)77063-3.
2
Induction of filopodia by direct local elevation of intracellular calcium ion concentration.
J Cell Biol. 1999 Jun 14;145(6):1265-75. doi: 10.1083/jcb.145.6.1265.
3
Two-photon imaging in living brain slices.
Methods. 1999 Jun;18(2):231-9, 181. doi: 10.1006/meth.1999.0776.
8
Optical measurement of presynaptic calcium currents.
Biophys J. 1998 Mar;74(3):1549-63. doi: 10.1016/S0006-3495(98)77867-1.
9
Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons.
J Physiol. 1997 Dec 15;505 ( Pt 3)(Pt 3):605-16. doi: 10.1111/j.1469-7793.1997.605ba.x.
10
Effects of injecting calcium-buffer solution on [Ca2+]i in voltage-clamped snail neurons.
Biophys J. 1996 May;70(5):2120-30. doi: 10.1016/S0006-3495(96)79778-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验