Suppr超能文献

深度先验 ODE 增强了带有化学传感器的荧光成像。

Deep-prior ODEs augment fluorescence imaging with chemical sensors.

机构信息

3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.

Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland.

出版信息

Nat Commun. 2024 Oct 24;15(1):9172. doi: 10.1038/s41467-024-53232-2.

Abstract

To study biological signalling, great effort goes into designing sensors whose fluorescence follows the concentration of chemical messengers as closely as possible. However, the binding kinetics of the sensors are often overlooked when interpreting cell signals from the resulting fluorescence measurements. We propose a method to reconstruct the spatiotemporal concentration of the underlying chemical messengers in consideration of the binding process. Our method fits fluorescence data under the constraint of the corresponding chemical reactions and with the help of a deep-neural-network prior. We test it on several GCaMP calcium sensors. The recovered concentrations concur in a common temporal waveform regardless of the sensor kinetics, whereas assuming equilibrium introduces artifacts. We also show that our method can reveal distinct spatiotemporal events in the calcium distribution of single neurons. Our work augments current chemical sensors and highlights the importance of incorporating physical constraints in computational imaging.

摘要

为了研究生物信号,人们花费大量精力设计荧光传感器,使其荧光尽可能紧密地跟随化学信使的浓度。然而,在解释荧光测量得出的细胞信号时,往往忽略了传感器的结合动力学。我们提出了一种方法,考虑到结合过程,来重建基础化学信使的时空浓度。我们的方法在相应化学反应的约束下,借助深度神经网络的先验知识,对荧光数据进行拟合。我们在几个 GCaMP 钙传感器上进行了测试。恢复的浓度无论传感器动力学如何,都在共同的时间波形中一致,而假设平衡则会引入伪影。我们还表明,我们的方法可以揭示单个神经元钙分布中的不同时空事件。我们的工作增强了当前的化学传感器,并强调了在计算成像中纳入物理约束的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c56/11502814/82114befcb94/41467_2024_53232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验