Suppr超能文献

在对照临床试验中使用SAS PROC.MIXED检验治疗效果显著性的相关问题。

Issues in use of SAS PROC.MIXED to test the significance of treatment effects in controlled clinical trials.

作者信息

Ahn C, Tonidandel S, Overall J E

机构信息

University of Texas Health Science Center at Houston, 77225, USA.

出版信息

J Biopharm Stat. 2000 May;10(2):265-86. doi: 10.1081/BIP-100101026.

Abstract

A project that originated with the aim of documenting the implications of dropouts for tests of significance based on general linear mixed model procedures resulted in recognition of problems in the use of SAS PROC.MIXED for this purpose. In responding to suggestions and criticisms, we have further analyzed simulated clinical trial data with realistic autoregressive structure, using alternative error model formulations, different approaches to the use of covariates to model dropout patterns, and different ways to include the critical time variable in the mixed model. Results emphasize the sensitivity of the PROC.MIXED tests of significance for GROUP and TIME x GROUP equal slopes hypothesis to less than optimal modeling of the error covariance structure. Even with the authoritatively recommended best available modeling of the error structure, model formulations that made use of the REPEATED statement did not maintain conservative test sizes when covariates were required to model dropout data patterns. Random coefficients models that employed the RANDOM statement did permit appropriate covariate controls, but the tests of significance for treatment effects were lacking in power. After examining a variety of alternative PROC.MIXED model formulations, it is concluded that none provided both Type I error protection and power comparable to that of simple two-stage analysis of covariance (ANCOVA) procedures for confirming the presence of true treatment effects in controlled clinical trials. Other issues examined in this article concern treating baseline scores as both covariate and initial repeated measurement to which a linear means model is fitted, failure to take advantage of the regression of repeated measurements on time in modeling time as an unordered categorical variable, and fitting linear regression models to nonlinear response patterns.

摘要

一个最初旨在记录基于一般线性混合模型程序的显著性检验中缺失值影响的项目,却导致了对使用SAS PROC.MIXED来实现此目的时存在的问题的认识。在回应各种建议和批评时,我们进一步分析了具有实际自回归结构的模拟临床试验数据,采用了替代的误差模型公式、使用协变量来模拟缺失值模式的不同方法,以及在混合模型中纳入关键时间变量的不同方式。结果强调了对于GROUP和TIME x GROUP等斜率假设的PROC.MIXED显著性检验,对误差协方差结构的建模不够理想时的敏感性。即使采用了权威推荐的最佳可用误差结构建模,当需要协变量来模拟缺失值数据模式时,使用REPEATED语句的模型公式也未能保持保守的检验规模。采用RANDOM语句的随机系数模型确实允许进行适当的协变量控制,但治疗效果的显著性检验缺乏效力。在研究了各种替代的PROC.MIXED模型公式后,得出的结论是,对于在对照临床试验中确认真实治疗效果的存在,没有一种公式能同时提供与简单的两阶段协方差分析(ANCOVA)程序相当的I型错误保护和效力。本文研究的其他问题包括将基线分数既作为协变量又作为初始重复测量值,并对其拟合线性均值模型、在将时间建模为无序分类变量时未能利用重复测量值对时间的回归,以及对非线性响应模式拟合线性回归模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验