Suppr超能文献

使用 SAS PROC CALIS 拟合潜在增长模型的一级误差协方差结构。

Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.

机构信息

Institute of Business and Management, National Chiao Tung University, 118 Chung-Hsiao West Road, Section 1, Taipei, Taiwan.

出版信息

Behav Res Methods. 2012 Sep;44(3):765-87. doi: 10.3758/s13428-011-0171-z.

Abstract

In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.

摘要

在本文中,我们展示了如何使用 SAS PROC CALIS 来拟合潜在增长模型(LGM)的各种类型的一级误差协方差结构。基于 SEM 方法的 PROC CALIS 的优势包括:通过多个指标来建模潜在结构随时间的变化;将 LGM 嵌入到更大的潜在变量模型中;纳入潜在预测因子的测量模型;以及更好地评估模型拟合度和指定误差协方差结构的灵活性。PROC CALIS 的优势始终伴随着技术编码工作,需要专门解决。我们提供了一个关于 SAS 语法的教程,用于对显变量的增长和潜在结构的增长进行建模,重点介绍了一级误差协方差结构的规范。使用两个给定的潜在增长模型生成的数据进行了说明。当增长模型已经确定并且需要确定一级误差协方差结构时,提供的编码将非常有帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验