Gegelashvili G, Dehnes Y, Danbolt N C, Schousboe A
NeuroScience PharmaBiotec Research Center, Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen, Denmark.
Neurochem Int. 2000 Aug-Sep;37(2-3):163-70. doi: 10.1016/s0197-0186(00)00019-x.
High-affinity glutamate transporters ensure termination of glutamatergic neurotransmission and keep the synaptic concentration of this amino acid below excitotoxic levels. However, neuronal glutamate transporters, EAAC1 and EAAT4, are located outside the synaptic cleft and contribute less significantly to the glutamate uptake in the brain than two astroglial transporters, GLAST and GLT1. Aberrant functioning of the glutamate uptake system seems to be linked to some neurodegenerative disorders (eg amyotrophic lateral sclerosis, ALS). Expression of glutamate transporters is differentially regulated via distinct cellular mechanisms. GLT1, which is expressed at very low levels in cultured astrocytes, is strongly induced in the presence of neurons. The present immunocytochemical data provide further evidence that neuronal soluble factors, rather than physical contact between neurons and glia, determine the induction of GLT1 in astrocytes. This effect is apparently mediated by yet undefined growth factor(s) via the tyrphostin-sensitive receptor tyrosine kinase (RTK) signalling, that in turn, supports the downstream activation of p42/44 MAP kinases and the CREM and ATF-1 transcription factors. RTK-independent simultaneous activation of the CREB transcription factor suggests a possible involvement of complementary pathway(s). Neuronal soluble factors do not affect expression of GLAST, but induce supporting machinery for differential regulation of GLAST via the astroglial metabotropic glutamate receptors, mGluR3 and mGluR5. Thus, long-term treatment with the group I mGluR agonist, DHPG, causes down-regulation of GLAST, whereas the group II agonist, DCG-IV, has an opposite effect on the expression of GLAST in astrocytes. However, in BT4C glioma cells glutamate or other transportable substrates (D-aspartate and L-2,4-trans-PDC) induced cell-surface expression of EAAT4 in a receptor-independent manner. The activity-dependent trafficking of this transporter which also exhibits properties of a glutamate-gated chloride channel may play functional roles not only in neuronal excitability, but in glioma cell biology as well.
高亲和力谷氨酸转运体可确保谷氨酸能神经传递的终止,并使这种氨基酸在突触处的浓度保持在兴奋性毒性水平以下。然而,神经元谷氨酸转运体EAAC1和EAAT4位于突触间隙之外,与两种星形胶质细胞转运体GLAST和GLT1相比,它们对大脑中谷氨酸摄取的贡献较小。谷氨酸摄取系统的异常功能似乎与一些神经退行性疾病(如肌萎缩侧索硬化症,ALS)有关。谷氨酸转运体的表达通过不同的细胞机制受到差异调节。GLT1在培养的星形胶质细胞中表达水平很低,但在有神经元存在的情况下会被强烈诱导。目前的免疫细胞化学数据进一步证明,是神经元可溶性因子而非神经元与神经胶质细胞之间的物理接触决定了星形胶质细胞中GLT1的诱导。这种效应显然是由尚未明确的生长因子通过对 tyrphostin敏感的受体酪氨酸激酶(RTK)信号传导介导的,进而支持p42/44丝裂原活化蛋白激酶以及CREM和ATF-1转录因子的下游激活。不依赖RTK的CREB转录因子的同时激活表明可能涉及互补途径。神经元可溶性因子不影响GLAST的表达,但通过星形胶质细胞代谢型谷氨酸受体mGluR3和mGluR5诱导对GLAST进行差异调节的支持机制。因此,用I组mGluR激动剂DHPG进行长期处理会导致GLAST下调,而II组激动剂DCG-IV对星形胶质细胞中GLAST的表达有相反的作用。然而,在BT4C胶质瘤细胞中,谷氨酸或其他可转运底物(D-天冬氨酸和L-2,4-反式-PDC)以受体非依赖的方式诱导EAAT4的细胞表面表达。这种转运体的活性依赖性运输也表现出谷氨酸门控氯离子通道的特性,可能不仅在神经元兴奋性中发挥功能作用,在胶质瘤细胞生物学中也发挥作用。