Suppr超能文献

In vitro cell models to study nasal mucosal permeability and metabolism.

作者信息

Merkle HP, Ditzinger G, Lang SR, Peter H, Schmidt MC

机构信息

Swiss Federal Institute of Technology Zurich (ETH), Department of Pharmacy, Irchel Campus, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

出版信息

Adv Drug Deliv Rev. 1998 Jan 5;29(1-2):51-79. doi: 10.1016/s0169-409x(97)00061-6.

Abstract

Whereas in vivo studies represent the most crucial test for any nasal drug application or formulation, mechanistic aspects of nasal absorption may be more clearly approached by well defined and controlled in vitro studies. In this review the progress of nasal in vitro models to investigate drug permeation and metabolism in the epithelium is summarized and their potential and limitations are discussed. The following subjects will be covered: (i) primary cell cultures of human nasal epithelium, including sampling techniques and culture conditions, (ii) human nasal cell lines (in particular the human nasal cell line RPMI 2650), and (iii) excised nasal epithelium (rabbit, bovine, ovine, canine, human), also summarizing suitable preparation techniques and tissue characterization, test media, tissue equilibration, viability testing, and integrity tests. Furthermore, an overview on the various experimental set-ups suitable for in vitro transport studies (permeation rates; identification of permeation pathways; mechanisms and toxicity of absorption enhancers) and for metabolism studies (rates, saturation and pathways of enzymatic cleavage) is presented. Some attention is given to identify potential endocytotic uptake mechanisms. To date, the permeation and metabolic barrier function of excised nasal tissue derived from various animals has shown to mimic the in vivo situation 'ex vivo' at the highest degree possible. Supply of human tissue will continue to be short. Therefore, further studies are necessary to evaluate and improve culture conditions, handling, performance and physiologic relevance of primary human cell and cell line cultures.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验