Suppr超能文献

线粒体基因组的维持与完整性:芽殖酵母中的大量核基因

Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast.

作者信息

Contamine V, Picard M

机构信息

Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France.

出版信息

Microbiol Mol Biol Rev. 2000 Jun;64(2):281-315. doi: 10.1128/MMBR.64.2.281-315.2000.

Abstract

Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.

摘要

线粒体基因组(mtDNA)的不稳定性是从酵母到人类的一个普遍问题。然而,除了酿酒酵母外,其遗传控制的文献记载并不充分。自50年前埃弗鲁西及其同事发现小菌落突变体以来,已表明100多个核基因直接或间接影响ρ(+)mtDNA的命运。参与mtDNA代谢(复制、修复和重组)的基因突变会导致mtDNA完全丢失(ρ(0)小菌落)和/或导致该基因组的截短形式(ρ(-)),这并不奇怪。然而,大多数增加酵母mtDNA不稳定性的功能丧失突变是间接起作用的:它们存在于控制多种功能的基因中,如线粒体翻译、ATP合酶、铁稳态、脂肪酸代谢、线粒体形态等。在少数情况下,已表明基因过表达会增加小菌落突变体的水平。在没有功能性mtDNA的情况下,其他基因的突变是致死的,因此会将这种小菌落阳性酵母转变为小菌落阴性形式:在这些遗传背景下无法获得小菌落细胞。如果假设ρ(+)基因组的维持依赖于一种对ρ(-)mtDNA的维持和/或线粒体编码的ATP合酶亚基(特别是ATP6)的功能可有可无的着丝粒样结构,那么大多数数据都可以得到解释。事实上,未来50年的真正挑战将是通过利用酵母并使用互补模型来拼凑这个谜题,特别是在严格需氧菌中。

相似文献

8
The petite mutation in yeasts: 50 years on.酵母中的小菌落突变:50年过去了。
Int Rev Cytol. 2000;194:197-238. doi: 10.1016/s0074-7696(08)62397-9.

引用本文的文献

7
Mapping mitonuclear epistasis using a novel recombinant yeast population.利用新型重组酵母群体进行核质互作定位。
PLoS Genet. 2023 Mar 29;19(3):e1010401. doi: 10.1371/journal.pgen.1010401. eCollection 2023 Mar.

本文引用的文献

9
Mitochondrial diseases in man and mouse.人类和小鼠的线粒体疾病。
Science. 1999 Mar 5;283(5407):1482-8. doi: 10.1126/science.283.5407.1482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验