Suppr超能文献

拟南芥WIGGUM基因的克隆确定了法尼基化在分生组织发育中的作用。

Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development.

作者信息

Ziegelhoffer E C, Medrano L J, Meyerowitz E M

机构信息

Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7633-8. doi: 10.1073/pnas.130189397.

Abstract

Control of cellular proliferation in plant meristems is important for maintaining the correct number and position of developing organs. One of the genes identified in the control of floral and apical meristem size and floral organ number in Arabidopsis thaliana is WIGGUM. In wiggum mutants, one of the most striking phenotypes is an increase in floral organ number, particularly in the sepals and petals, correlating with an increase in the width of young floral meristems. Additional phenotypes include reduced and delayed germination, delayed flowering, maturation, and senescence, decreased internode elongation, shortened roots, aberrant phyllotaxy of flowers, aberrant sepal development, floral buds that open precociously, and occasional apical meristem fasciation. As a first step in determining a molecular function for WIGGUM, we used positional cloning to identify the gene. DNA sequencing revealed that WIGGUM is identical to ERA1 (enhanced response to abscisic acid), a previously identified farnesyltransferase beta-subunit gene of Arabidopsis. This finding provides a link between protein modification by farnesylation and the control of meristem size. Using in situ hybridization, we examined the expression of ERA1 throughout development and found it to be nearly ubiquitous. This extensive expression domain is consistent with the pleiotropic nature of wiggum mutants and highlights a broad utility for farnesylation in plant growth and development.

摘要

控制植物分生组织中的细胞增殖对于维持发育中器官的正确数量和位置至关重要。在拟南芥中,已确定的控制花分生组织和顶端分生组织大小以及花器官数量的基因之一是WIGGUM。在wiggum突变体中,最显著的表型之一是花器官数量增加,尤其是萼片和花瓣,这与幼小花分生组织宽度的增加相关。其他表型包括种子萌发减少和延迟、开花延迟、成熟和衰老延迟、节间伸长减少、根缩短、花的叶序异常、萼片发育异常、花芽早熟开放以及偶尔出现的顶端分生组织扁化。作为确定WIGGUM分子功能的第一步,我们使用定位克隆来鉴定该基因。DNA测序显示WIGGUM与ERA1(对脱落酸的增强反应)相同,ERA1是拟南芥中先前鉴定的法尼基转移酶β亚基基因。这一发现揭示了法尼基化修饰蛋白与分生组织大小控制之间的联系。通过原位杂交,我们检测了ERA1在整个发育过程中的表达,发现其表达几乎无处不在。这种广泛的表达域与wiggum突变体的多效性本质一致,并突出了法尼基化在植物生长发育中的广泛作用。

相似文献

1
Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development.
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7633-8. doi: 10.1073/pnas.130189397.
2
The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis.
Development. 1998 Jul;125(14):2545-53. doi: 10.1242/dev.125.14.2545.
4
The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis.
Development. 2001 Apr;128(8):1323-33. doi: 10.1242/dev.128.8.1323.
6
Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY.
Plant Mol Biol. 1998 Aug;37(6):897-910. doi: 10.1023/a:1006056014079.
7
The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice.
Plant Physiol. 2006 Nov;142(3):1039-52. doi: 10.1104/pp.106.086736. Epub 2006 Sep 29.
8
ETTIN patterns the Arabidopsis floral meristem and reproductive organs.
Development. 1997 Nov;124(22):4481-91. doi: 10.1242/dev.124.22.4481.
9
Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene.
Plant Cell Physiol. 2006 Dec;47(12):1591-602. doi: 10.1093/pcp/pcl025. Epub 2006 Oct 20.
10
A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development.
Plant Mol Biol. 2020 Jan;102(1-2):39-54. doi: 10.1007/s11103-019-00936-5. Epub 2019 Dec 5.

引用本文的文献

3
Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana.
J Integr Plant Biol. 2021 Jul;63(7):1353-1366. doi: 10.1111/jipb.13093. Epub 2021 May 6.
4
Protein Farnesylation Takes Part in Arabidopsis Seed Development.
Front Plant Sci. 2021 Jan 28;12:620325. doi: 10.3389/fpls.2021.620325. eCollection 2021.
5
Phyllotaxis: from classical knowledge to molecular genetics.
J Plant Res. 2021 May;134(3):373-401. doi: 10.1007/s10265-020-01247-3. Epub 2021 Feb 7.
8
Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance.
Genes Dev. 2017 Nov 15;31(22):2282-2295. doi: 10.1101/gad.301242.117. Epub 2017 Dec 21.

本文引用的文献

2
Changes in Protein Isoprenylation during the Growth of Suspension-Cultured Tobacco Cells.
Plant Physiol. 1995 Sep;109(1):277-284. doi: 10.1104/pp.109.1.277.
4
Protein farnesylation in plants: a greasy tale.
Curr Opin Plant Biol. 1999 Oct;2(5):388-92. doi: 10.1016/s1369-5266(99)00010-2.
5
Protein prenylation in plants: old friends and new targets.
Plant Mol Biol. 1999 Mar;39(5):865-70. doi: 10.1023/a:1006170020836.
6
Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems.
Science. 1999 Mar 19;283(5409):1911-4. doi: 10.1126/science.283.5409.1911.
8
Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem.
Cell. 1998 Dec 11;95(6):805-15. doi: 10.1016/s0092-8674(00)81703-1.
10
Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss.
Science. 1998 Oct 9;282(5387):287-90. doi: 10.1126/science.282.5387.287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验