Vigário R, Särelä J, Jousmäki V, Hämäläinen M, Oja E
Laboratory of Computer and Information Science, Helsinki University of Technology, HUT, Finland.
IEEE Trans Biomed Eng. 2000 May;47(5):589-93. doi: 10.1109/10.841330.
Multichannel recordings of the electromagnetic fields emerging from neural currents in the brain generate large amounts of data. Suitable feature extraction methods are, therefore, useful to facilitate the representation and interpretation of the data. Recently developed independent component analysis (ICA) has been shown to be an efficient tool for artifact identification and extraction from electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings. In addition, ICA has been applied to the analysis of brain signals evoked by sensory stimuli. This paper reviews our recent results in this field.
大脑中神经电流产生的电磁场的多通道记录会生成大量数据。因此,合适的特征提取方法有助于促进数据的表示和解释。最近开发的独立成分分析(ICA)已被证明是从脑电图(EEG)和脑磁图(MEG)记录中识别和提取伪迹的有效工具。此外,ICA已应用于感觉刺激诱发的脑信号分析。本文综述了我们在该领域的最新成果。