Ott C M, Smith B D, Portis A R, Spreitzer R J
Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA.
J Biol Chem. 2000 Aug 25;275(34):26241-4. doi: 10.1074/jbc.M004580200.
In the active form of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC ), a carbamate at lysine 201 binds Mg(2+), which then interacts with the carboxylation transition state. Rubisco activase facilitates this spontaneous carbamylation/metal-binding process by removing phosphorylated inhibitors from the Rubisco active site. Activase from Solanaceae plants (e.g. tobacco) fails to activate Rubisco from non-Solanaceae plants (e.g. spinach and Chlamydomonas reinhardtii), and non-Solanaceae activase fails to activate Solanaceae Rubisco. Directed mutagenesis and chloroplast transformation previously showed that a proline 89 to arginine substitution on the surface of the large subunit of Chlamydomonas Rubisco switched its specificity from non-Solanaceae to Solanaceae activase activation. To define the size and function of this putative activase binding region, substitutions were created at positions flanking residue 89. As in the past, these substitutions changed the identities of Chlamydomonas residues to those of tobacco. Whereas an aspartate 86 to arginine substitution had little effect, aspartate 94 to lysine Rubisco was only partially activated by spinach activase but now fully activated by tobacco activase. In an attempt to eliminate the activase/Rubisco interaction, proline 89 was changed to alanine, which is not present in either non-Solanaceae or Solanaceae Rubisco. This substitution also caused reversal of activase specificity, indicating that amino acid identity alone does not determine the specificity of the interaction.
在1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco,EC )的活性形式中,赖氨酸201上的氨基甲酸盐结合Mg(2+),然后Mg(2+)与羧化过渡态相互作用。Rubisco活化酶通过从Rubisco活性位点去除磷酸化抑制剂来促进这种自发的氨甲酰化/金属结合过程。茄科植物(如烟草)的活化酶不能激活非茄科植物(如菠菜和莱茵衣藻)的Rubisco,而非茄科植物的活化酶也不能激活茄科植物的Rubisco。定向诱变和叶绿体转化先前表明,莱茵衣藻Rubisco大亚基表面的脯氨酸89突变为精氨酸,使其特异性从非茄科植物活化酶激活转变为茄科植物活化酶激活。为了确定这个假定的活化酶结合区域的大小和功能,在残基89两侧的位置进行了替换。和过去一样,这些替换将莱茵衣藻的残基替换为烟草的残基。天冬氨酸86突变为精氨酸的替换影响不大,而天冬氨酸94突变为赖氨酸的Rubisco仅被菠菜活化酶部分激活,但现在被烟草活化酶完全激活。为了消除活化酶/Rubisco的相互作用,脯氨酸89被替换为丙氨酸,丙氨酸在非茄科植物和茄科植物的Rubisco中都不存在。这种替换也导致了活化酶特异性的逆转,表明仅氨基酸的一致性并不能决定相互作用的特异性。