Suppr超能文献

Rubisco 中央溶剂通道开口处的取代会影响全酶的稳定性和 CO2/O2 的特异性,但不会影响 Rubisco 激活酶的激活。

Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O 2 specificity but not activation by Rubisco activase.

机构信息

Instituto Superior de Agronomia (ISA), Technical University of Lisbon, 1399, Lisbon, Portugal,

出版信息

Photosynth Res. 2013 Dec;118(3):209-18. doi: 10.1007/s11120-013-9916-0. Epub 2013 Sep 7.

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA-βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.

摘要

核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)催化光合作用中碳代谢的初始步骤。全酶由八个大亚基组成,排列成围绕中央溶剂通道的四聚体二聚体,该通道定义了四元对称轴,还有八个小亚基,排列成位于轴两极的两个四聚体。在系统发育上有差异的小亚基βA-βB 环之间的环形成溶剂通道的入口。在绿藻莱茵衣藻中,来自四个小亚基βA-βB 环的每个 Ile-58 定义了通道开口的最小直径。为了了解中央溶剂通道在 Rubisco 功能中的作用,采用定向诱变和衣藻转化的方法,用 Ala、Lys、Glu、Trp 或三个 Trp 残基(I58W3)取代 Ile-58 以关闭通道入口。I58E、I58K 和 I58W 取代仅导致在 25 和 35°C 时光合作用生长略有下降,而 I58W3 在两种温度下均有显著影响。突变酶的羧化速率降低,但 I58W3 酶的羧化和 CO2/O2 特异性均降低。与野生型 Rubisco 相比,I58E、I58W 和 I58W3 酶在较低温度下失活,在氧化应激下降解速度较慢。然而,这些突变酶在正常速率下被 Rubisco 激活酶激活,表明对羧化作用所必需的结构转变不受改变溶剂通道开口的影响。结构动力学本身可能不是导致这些对 Rubisco 活性位点的远距离影响的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验