Suppr超能文献

修复受抑制的核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)活性位点的多种AAA+机器

The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites.

作者信息

Mueller-Cajar Oliver

机构信息

School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore.

出版信息

Front Mol Biosci. 2017 May 19;4:31. doi: 10.3389/fmolb.2017.00031. eCollection 2017.

Abstract

Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.

摘要

气态二氧化碳几乎完全通过1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)的活性位点进入生物圈。这种高度保守的催化剂几乎普遍倾向于与其底物1,5-二磷酸核酮糖进行非生产性相互作用,导致形成终产物抑制复合物。在各种自养生物中,这种趋势已通过招募专门的AAA+(与各种细胞活动相关的ATP酶)蛋白得到抵消,这些蛋白都利用ATP水解的能量来重塑受抑制的Rubisco活性位点,从而导致抑制剂的释放。到目前为止,已经发现了三类在进化上不同的Rubisco活化酶(Rcas)。绿色型和红色型Rca分别主要存在于绿色和红色质体谱系的光合真核生物中,而CbbQO与化学自养细菌有关。正在进行的机制研究正在阐明各种分子马达如何利用相似和不同的策略最终执行其破解受抑制的Rubisco活性位点的共同功能。红色型Rca研究得最透彻的机制似乎涉及Rubisco大亚基C末端肽的短暂穿入,这让人联想到Clp蛋白酶的作用。除了提供趋同分子进化的一个引人入胜的例子外,Rca蛋白可被视为有前景的作物改良靶点。旨在用改良酶替代植物中Rubisco的方法需要确保存在兼容的Rca蛋白。作物中发现的Rca蛋白的热稳定性为增强光合作用以抵御高温胁迫提供了一个机会。当光照条件波动时,光合作用似乎也受到Rca的限制。旨在增强自养CO固定机制的合成生物学策略需要考虑对Rubisco活化酶的需求及其特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6116/5437159/565c6d7fe005/fmolb-04-00031-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验