Suppr超能文献

自发性糖尿病BB大鼠冠状动脉内皮细胞中一氧化氮生成受损是由于四氢生物蝶呤缺乏所致。

Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency.

作者信息

Meininger C J, Marinos R S, Hatakeyama K, Martinez-Zaguilan R, Rojas J D, Kelly K A, Wu G

机构信息

Cardiovascular Research Institute and Department of Medical Physiology, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.

出版信息

Biochem J. 2000 Jul 1;349(Pt 1):353-6. doi: 10.1042/0264-6021:3490353.

Abstract

Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH(4)), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH(4) levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH(4) levels with sepiapterin increased NO production, suggesting that BH(4) deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH(4). GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.

摘要

糖尿病BioBreeding(BB)大鼠的内皮细胞(EC)产生一氧化氮(NO)的能力受损。这种缺陷并非由于EC中一氧化氮合酶的组成型同工型(ecNOS)存在缺陷,也不是由于细胞内钙、钙调蛋白、烟酰胺腺嘌呤二核苷酸磷酸(NADPH)或精氨酸水平发生改变。相反,由于四氢生物蝶呤(BH(4))缺乏,ecNOS无法产生足够的NO,BH(4)是酶活性所必需的一种辅助因子。糖尿病大鼠的EC中BH(4)水平仅为正常动物或未发病的糖尿病易感动物的EC中BH(4)水平的12%。因此,糖尿病大鼠的EC合成的NO仅为正常动物的18%。用蝶酰三嗪提高BH(4)水平可增加NO的产生,这表明BH(4)缺乏是糖尿病BB大鼠内皮NO合成受损的代谢基础。这种缺乏是由于GTP-环化水解酶I的活性降低所致,GTP-环化水解酶I是BH(4)从头生物合成中的第一种且限速酶。由于糖尿病细胞中该蛋白的表达降低,GTP-环化水解酶的活性较低。

相似文献

引用本文的文献

1
The status of studies on the mechanism of microcirculatory dysfunction in the process of diabetic kidney injury.
Diabetol Metab Syndr. 2025 May 14;17(1):154. doi: 10.1186/s13098-025-01718-4.
2
Preliminary screening of biomarkers and drug candidates in a mouse model of β-thalassemia based on quasi-targeted metabolomics.
Front Physiol. 2024 Aug 23;15:1452558. doi: 10.3389/fphys.2024.1452558. eCollection 2024.
4
Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets.
Cell Mol Biol Lett. 2023 Mar 9;28(1):21. doi: 10.1186/s11658-023-00423-2.
6
Naringenin upregulates GTPCH1/eNOS to ameliorate high glucose-induced retinal endothelial cell injury.
Exp Ther Med. 2022 Jun;23(6):428. doi: 10.3892/etm.2022.11355. Epub 2022 May 5.
7
Hydroxyproline in animal metabolism, nutrition, and cell signaling.
Amino Acids. 2022 Apr;54(4):513-528. doi: 10.1007/s00726-021-03056-x. Epub 2021 Aug 3.
8
A hybrid approach reveals the allosteric regulation of GTP cyclohydrolase I.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31838-31849. doi: 10.1073/pnas.2013473117. Epub 2020 Nov 23.
9
Oxidative Stress, GTPCH1, and Endothelial Nitric Oxide Synthase Uncoupling in Hypertension.
Antioxid Redox Signal. 2021 Mar 20;34(9):750-764. doi: 10.1089/ars.2020.8112. Epub 2020 May 27.
10
Specialized Pro-resolving Lipid Mediators: Modulation of Diabetes-Associated Cardio-, Reno-, and Retino-Vascular Complications.
Front Pharmacol. 2018 Dec 19;9:1488. doi: 10.3389/fphar.2018.01488. eCollection 2018.

本文引用的文献

1
Arginine metabolism: nitric oxide and beyond.
Biochem J. 1998 Nov 15;336 ( Pt 1)(Pt 1):1-17. doi: 10.1042/bj3360001.
5
Simultaneous measurement of intracellular pH and Ca2+ in insulin-secreting cells by spectral imaging microscopy.
Am J Physiol. 1996 May;270(5 Pt 1):C1438-46. doi: 10.1152/ajpcell.1996.270.5.C1438.
8
Evaluation of the mechanism of endothelial dysfunction in the genetically-diabetic BB rat.
Life Sci. 1996;58(9):PL147-52. doi: 10.1016/0024-3205(95)02360-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验