Suppr超能文献

GTP环化水解酶I基因转移可逆转四氢生物蝶呤缺乏,并增加糖尿病大鼠内皮细胞和离体血管中的一氧化氮合成。

GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats.

作者信息

Meininger Cynthia J, Cai Shijie, Parker Janet L, Channon Keith M, Kelly Katherine A, Becker Elizabeth J, Wood M Kathy, Wade Laura A, Wu Guoyao

机构信息

Cardiovascular Research Institute, Department of Medical Physiology, Texas A&M University System Health Science Center, Temple, Texas 76504, USA.

出版信息

FASEB J. 2004 Dec;18(15):1900-2. doi: 10.1096/fj.04-1702fje. Epub 2004 Oct 5.

Abstract

Nitric oxide (NO) synthesis in endothelial cells is impaired in diabetes. We previously showed that impaired NO synthesis in the spontaneously diabetic BB (BBd) rat is due to decreased levels of tetrahydrobiopterin (BH4), secondary to decreased expression of GTP cyclohydrolase I (GTPCH). The aim of this study was to utilize adenoviral GTPCH gene transfer to reverse BH4 deficiency and repair the ability of endothelial cells to produce NO. GTPCH gene transfer increased BH4 levels in BBd endothelial cells from 0.17 +/- 0.02 (mean +/-SE) to 73.37 +/- 14.42 pmol/million cells and NO production from 0.77 +/- 0.07 to 18.74 +/- 5.52 nmol/24 h/million cells. To demonstrate a functional effect of increasing BH4 concentrations in tissues, we transferred GTPCH into aortic rings from BBd and Zucker diabetic fatty (ZDF) rats, models of human type I and type II diabetes, respectively. GTPCH gene transfer led to a dose-dependent increase in acetylcholine-induced vasorelaxation, preventable by inhibiting NO synthase. Maximal relaxation of virus-treated rings (10(10) virus particles/ml) to acetylcholine was significantly higher than sham-treated rings (BBd 64% vs. 37%, P<0.005; ZDF 80% vs. 44%, P<0.05). This study demonstrates that GTPCH gene transfer can reverse BH4 deficiency in both type I and type II diabetes and provides an experimental basis for using gene therapy to treat cardiovascular complications in diabetic patients.

摘要

糖尿病患者内皮细胞中的一氧化氮(NO)合成受损。我们之前发现,自发性糖尿病BB(BBd)大鼠中NO合成受损是由于四氢生物蝶呤(BH4)水平降低,这继发于鸟苷三磷酸环化水解酶I(GTPCH)表达减少。本研究的目的是利用腺病毒介导的GTPCH基因转移来逆转BH4缺乏,并修复内皮细胞产生NO的能力。GTPCH基因转移使BBd内皮细胞中的BH4水平从0.17±0.02(平均值±标准误)增加到73.37±14.42 pmol/百万细胞,NO生成量从0.77±0.07增加到18.74±5.52 nmol/24小时/百万细胞。为了证明增加组织中BH4浓度的功能效应,我们将GTPCH分别转入BBd大鼠和Zucker糖尿病脂肪(ZDF)大鼠的主动脉环,这两种大鼠分别是人类I型和II型糖尿病的模型。GTPCH基因转移导致乙酰胆碱诱导的血管舒张呈剂量依赖性增加,抑制NO合酶可预防这种增加。病毒处理环(10¹⁰病毒颗粒/毫升)对乙酰胆碱的最大舒张明显高于假处理环(BBd为64%对37%,P<0.005;ZDF为80%对44%,P<0.05)。本研究表明,GTPCH基因转移可逆转I型和II型糖尿病中的BH4缺乏,并为使用基因疗法治疗糖尿病患者的心血管并发症提供了实验依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验