Suppr超能文献

C16:0 硫苷脂双层膜的异常水合特性。

Unusual hydration properties of C16:0 sulfatide bilayer membranes.

作者信息

Saxena K, Duclos R I, Sripada P K, Shipley G G

机构信息

Department of Biophysics, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

Biophys J. 2000 Jul;79(1):385-93. doi: 10.1016/S0006-3495(00)76300-4.

Abstract

After deacylation of bovine brain sulfatide under mild alkaline conditions and reacylation using palmitoyl chloride (, Chem. Phys. Lipids. 34:41-53), the anionic glycosphingolipid N-palmitoyl galactosulfatide (C16:0-GalSulf) has been synthesized. By differential scanning calorimetry (DSC), anhydrous C16:0-GalSulf exhibits an endothermic transition, T(M) = 93 degrees C (DeltaH = 5. 5 kcal/mol C16:0-GalSulf) on heating. With increasing hydration (50 mM sodium phosphate buffer, pH 7.0; 50 mM NaCl), T(M) decreases, reaching a limiting value of 49 degrees C (DeltaH = 8.2 kcal/mol C16:0-GalSulf) at 20 wt% buffer. X-ray diffraction data have been recorded over the hydration range 0-62% at temperatures below (20 degrees C) and above (60 degrees C) T(M). At 20 degrees C, sharp wide-angle reflections at approximately 1/4.4 A(-1), approximately 1/4.1 A(-1), and approximately 1/3.8 A(-1) indicate the presence of an ordered-chain gel phase, whereas at 60 degrees C a broad reflection at 1/4.5 A(-1) characteristic of a melted-chain phase is observed. Lamellar diffraction patterns consistent with the presence of bilayer phases are observed at both temperatures. At 60 degrees C, in the liquid-crystalline L(alpha) phase, the bilayer periodicity increases with hydration, in both water and 100 mM Na(+) buffer. Interestingly, in the gel phase at 20 degrees C, the bilayer periodicity (d = 64 A) is insensitive to hydration (over the range 30-60 wt%) with either water or buffer. The continuous swelling behavior exhibited by the L(alpha) bilayer phase of C16:0-GalSulf is typical of lipids bearing a net negative charge and confirms that the presence of 100 mM Na(+) is insufficient to shield the charge contributed by the sulfate group. In contrast, the lack of continuous swelling behavior of the bilayer gel phase of C16:0-GalSulf is unusual and resembles that of Na(+) soaps. Thus, presumably, alterations in the surface charge characteristics of the C16:0-GalSulf bilayer occur on hydrocarbon chain melting and lead to major changes in lipid hydration.

摘要

在温和碱性条件下对牛脑硫脂进行脱酰基反应,并使用棕榈酰氯进行再酰基化反应(《化学与物理脂质》,34:41 - 53)后,合成了阴离子糖鞘脂N - 棕榈酰半乳糖硫脂(C16:0 - GalSulf)。通过差示扫描量热法(DSC),无水C16:0 - GalSulf在加热时呈现吸热转变,T(M) = 93℃(ΔH = 5.5千卡/摩尔C16:0 - GalSulf)。随着水合作用增强(50 mM磷酸钠缓冲液,pH 7.0;50 mM NaCl),T(M)降低,在20 wt%缓冲液时达到极限值49℃(ΔH = 8.2千卡/摩尔C16:0 - GalSulf)。在低于(20℃)和高于(60℃)T(M)的温度下,记录了0 - 62%水合范围内的X射线衍射数据。在20℃时,约1/4.4 Å⁻¹、约1/4.1 Å⁻¹和约1/3.8 Å⁻¹处的尖锐广角反射表明存在有序链凝胶相,而在60℃时,观察到1/4.5 Å⁻¹处的宽反射,这是熔融链相的特征。在两个温度下均观察到与双层相存在一致的层状衍射图案。在60℃的液晶L(α)相中,在水和100 mM Na⁺缓冲液中,双层周期性均随水合作用增加。有趣的是,在20℃的凝胶相中,双层周期性(d = 64 Å)对水合作用(在30 - 60 wt%范围内)不敏感,无论是用水还是缓冲液。C16:0 - GalSulf的L(α)双层相表现出的连续膨胀行为是带有净负电荷脂质的典型特征,并证实100 mM Na⁺的存在不足以屏蔽硫酸根基团贡献的电荷。相比之下,C16:0 - GalSulf双层凝胶相缺乏连续膨胀行为是不寻常的,类似于Na⁺肥皂的情况。因此,推测C16:0 - GalSulf双层的表面电荷特性在烃链熔化时发生改变,并导致脂质水合作用的重大变化。

相似文献

1
Unusual hydration properties of C16:0 sulfatide bilayer membranes.
Biophys J. 2000 Jul;79(1):385-93. doi: 10.1016/S0006-3495(00)76300-4.
3
Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
Biophys J. 1994 May;66(5):1469-78. doi: 10.1016/S0006-3495(94)80937-3.
4
X-ray diffraction and calorimetric study of N-lignoceryl sphingomyelin membranes.
Biophys J. 1995 Nov;69(5):1909-16. doi: 10.1016/S0006-3495(95)80061-5.
5
Bilayer properties of totally synthetic C16:0-lactosyl-ceramide.
Biophys J. 2000 Jan;78(1):306-12. doi: 10.1016/S0006-3495(00)76593-3.

引用本文的文献

1
The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition.
Front Mol Biosci. 2022 Nov 30;9:1080161. doi: 10.3389/fmolb.2022.1080161. eCollection 2022.

本文引用的文献

1
Bilayer properties of totally synthetic C16:0-lactosyl-ceramide.
Biophys J. 2000 Jan;78(1):306-12. doi: 10.1016/S0006-3495(00)76593-3.
2
Adhesion between cerebroside bilayers.
Biochemistry. 1999 Nov 16;38(46):15264-71. doi: 10.1021/bi991725m.
4
Functions of lipid rafts in biological membranes.
Annu Rev Cell Dev Biol. 1998;14:111-36. doi: 10.1146/annurev.cellbio.14.1.111.
5
Sulfated galactocerebrosides as potential antiinflammatory agents.
J Med Chem. 1997 Sep 26;40(20):3234-47. doi: 10.1021/jm9606960.
6
Functional role of glycosphingolipids in cell recognition and signaling.
J Biochem. 1995 Dec;118(6):1091-103. doi: 10.1093/oxfordjournals.jbchem.a124992.
8
Structure and properties of N-palmitoleoylgalactosylsphingosine (cerebroside).
Biochim Biophys Acta. 1995 Dec 13;1240(2):133-41. doi: 10.1016/0005-2736(95)00174-3.
10
Inositol trisphosphate and calcium signalling.
Nature. 1993 Jan 28;361(6410):315-25. doi: 10.1038/361315a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验